LU01b - Zahlensysteme: Einführung

Ein Zahlensystem bestimmt die Symbole (0, 1, 2, ...) zur Notation von Zahlen und deren Bedeutung. Die heute verwendeten Zahlensysteme sind sogenannte Stellenwertsysteme. Das bedeutet: Der Wert eines Symbols ist abhängig davon, an welcher Stelle das Symbol steht.

Hat man ein Stellenwertsystem verstanden, so können die Regeln auf jedes beliebige andere Stellenwertsystem übertragen.

Dezimalsystem (10er-System)

Am vertrautesten ist uns das 10er-System, da wir es im Alltag gebrauchen. Die Regeln für das 10er-System lauten:

- Es gibt 10 unterschiedliche Symbole für die Ziffern (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).
- Der Wert des Symbols wird mit dem Wert der Stelle multipliziert.
 - Die Stelle direkt **links** vom Dezimalpunkt hat den Stellenwert **1**.
 - Nach links wird der Wert jeder Stelle mit 10 multipliziert.
 - Nach rechts wird der Wert jeder Stelle durch 10 dividiert.

Beispiel

 $5'732.6_{10} = 5*1'000 + 7*100 + 3*10 + 2*1 + 6*0.1$

Binärsystem (2er-System)

Das Binärsystem dient zur Speicherung und Verarbeitung von Informationen.

Die Regeln für das 2er-System lauten:

- Es gibt 2 unterschiedliche Symbole für die Ziffern (0, 1).
- Der Wert des Symbols wird mit dem Wert der Stelle multipliziert.
 - Die Stelle direkt **links** vom Dezimalpunkt hat den Stellenwert **1**.
 - Nach links wird der Wert jeder Stelle mit 2 multipliziert.
 - Nach rechts wird der Wert jeder Stelle durch 2 dividiert.

Beispiel

 $01011100.1001_2 = 1*64 + 1*16 + 1*8 + 1*4 + 1*1/2 + 1*1/16$

Hexadezimales System (16er-System)

Zur Darstellung von binär codierten Zahlen, werden jeweils 4 binäre Ziffern zu einer hexadezimalen Ziffer zusammen gefasst. Dadurch können Informationen kompakter dargestellt werden.

Die Regeln für das 16er-System lauten:

- Es gibt 16 unterschiedliche Symbole für die Ziffern (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).
 - A entspricht dem Wert 10
 - B entspricht dem Wert 11
 - 0 ..
 - F entspricht dem Wert 15
- Der Wert des Symbols wird mit dem Wert der Stelle multipliziert.
 - Die Stelle direkt **links** vom Dezimalpunkt hat den Stellenwert **1**.
 - Nach links wird der Wert jeder Stelle mit 16 multipliziert.
 - Nach rechts wird der Wert jeder Stelle durch 16 dividiert.

Beispiele

Hexadezimal in Dezimal umrechnen

$$A3C2_{16} = 10*4096 + 3*256 + 12*16 + 2*1 = 41922_{10}$$

Binär in Hexadezimal umrechnen

Binär: 0101 1100 1001 0011 Hex: 5 C 9 3

Zahlensysteme umrechnen

Umwandlung im 2er/8er/16er System

Die Zahlensysteme Binär (2er), Oktal (8er) und Hexadezimal (16er) lassen sich recht einfach umwandeln. Das liegt daran, dass 2, 8 und 16 alles Potenzen der Zahl 2 sind:

- $2 = 2^1$
- $8 = 2^3$
- $16 = 2^4$

Wollen wir eine Zahl vom Binär- ins Oktal-System umwandeln, so nehmen wir von rechts nach links jeweils 3 binäre Stellen und wandeln diese in 1 oktale Stelle um:

 $01\ 101\ 011 = 153$

https://wiki.bzz.ch/ Printed on 2025/11/20 02:40

Vom Hexadezimalsystem ins Binärsystem wandeln wir 1 hexadezimale Stelle in 4 binäre Stellen um:

$$A31C = 1010 \ 0011 \ 0001 \ 1100$$

Umrechnen von/nach Dezimalsystem

Das Dezimalsystem basiert nicht auf einer Potenz der Zahl 2. Daher müssen wir die Zahlen umrechnen und können nicht einfach Stellen ersetzen.

Dezimalzahl umrechnen

Bei der Umrechnung einer Dezimalzahl divideren wir die Zahl immer wieder durch die neue Basis, z.B. 16. Bei jeder Division notieren wir den ganzzahligen Rest.

$$253_{10} = FD_{16}$$

```
253 / 16 = 15 Rest 13 => Notiere D
15 / 16 = 0 Rest 15 => Notiere F
```

$$253_{10} = 375_8$$

```
253 / 8 = 31 Rest 5
31 / 8 = 3 Rest 7
3 / 8 = 0 Rest 3
```

Umrechnung ins Dezimalsystem

System Multiplikation

Bei der Umrechnung in eine Dezimalzahl wenden wir wiederholt eine Multiplikation und Addition an. Dabei gehen wir von links nach rechts vor:

$$375_8 = 253_{10}$$

```
0 * 8 + 3 = 3

3 * 8 + 7 = 31

31 * 8 + 5 = 253
```

System Stellenwertsystem

Jede Zahl im Zehnersystem₁₀ hat einen bestimmten Stellenwert.

Schauen wir uns dazu die Zahl 732₁₀ an.

```
732 ist die Summe aus:
```

$$7*10^2 = 7 * 100 = 700 + 3*10^1 = 3 * 10 = 30 + 3*10^0 = 3 * 1 = 3 + 732$$

Schauen wir uns dazu die Zahl A4B₁₆ an.

```
A4B ist die Summe aus:
A*16^2 = 10 * 256 = 2560 +
4*16^1 = 4 * 16 =
                      64 +
B*16^0 = 11 * 1
                      11 +
                    2635
```


Genaueres erfahren Sie auf den nächsten Theorieseiten!

m114-A1G, m114-A1F

https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

https://wiki.bzz.ch/modul/m114/learningunits/lu01/zahlensystemeeinfuehrung?rev=1711631267

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/ Printed on 2025/11/20 02:40