
2026/02/03 07:19 1/2 LU08a - Einführung Bash-Befehle in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

LU08a - Einführung Bash-Befehle in Python

Python ist nicht nur eine vielseitige Programmiersprache für Anwendungen, Datenanalyse und
maschinelles Lernen, sondern eignet sich auch hervorragend, um mit der Kommandozeile zu
interagieren und Bash-Befehle auszuführen. Diese Funktionalität ist besonders nützlich, wenn Sie
Skripte schreiben, die Prozesse automatisieren, Daten sammeln oder Systemaufgaben ausführen
müssen.

Warum Bash-Befehle in Python nutzen?

Die Integration von Bash-Befehlen in Python bietet die Möglichkeit:

vorhandene Bash-Skripte und Befehle wiederzuverwenden,
komplexe Workflows zu automatisieren,
sowohl die Vorteile von Python (Lesbarkeit, Datenverarbeitung) als auch von Bash
(Systemzugriff) zu kombinieren.

Sicherheitshinweise

Eingaben validieren

Vermeiden Sie die direkte Übergabe von Benutzereingaben an Shell-Befehle, um Sicherheitsrisiken
wie Code-Injection zu verhindern.

Beispiel:

Unsicher: Benutzer kann Schadcode einschleusen
os.system(f"rm -rf {user_input}")

Stattdessen:

subprocess.run(['rm', '-rf', user_input], check=True)

Fehlerbehandlung

Überprüfen Sie Rückgabecodes und Ausgaben auf Fehler.

import subprocess

Bash-Befehl, der ausgeführt werden soll
command = "ls -l /"

try:
 # Ausführung des Befehls

Last update: 2024/12/09 10:31 modul:m122:learningunits:lu08:einfuehrung https://wiki.bzz.ch/modul/m122/learningunits/lu08/einfuehrung

https://wiki.bzz.ch/ Printed on 2026/02/03 07:19

 result = subprocess.run(
 command, # Der Befehl als String
 shell=True, # Ausführung in einer Shell
 check=True, # Fehler werfen, wenn der Rückgabecode ungleich 0
ist
 text=True, # Gibt die Ausgaben als Strings zurück (anstatt
Bytes)
 stdout=subprocess.PIPE, # Standardausgabe umleiten
 stderr=subprocess.PIPE # Standardfehlerausgabe umleiten
)
 # Ausgabe des Ergebnisses
 print("Befehl erfolgreich ausgeführt!")
 print("Rückgabecode:", result.returncode)
 print("Ausgabe:")
 print(result.stdout)
except subprocess.CalledProcessError as e:
 # Fehlerbehandlung, wenn der Befehl fehlschlägt
 print("Fehler bei der Ausführung des Befehls!")
 print("Rückgabecode:", e.returncode)
 print("Fehlermeldung:")
 print(e.stderr)
except Exception as ex:
 # Generelle Fehlerbehandlung
 print(f"Ein unerwarteter Fehler ist aufgetreten: {ex}")

Fazit

Python bietet flexible Werkzeuge zur Integration von Bash-Befehlen und ist eine ideale Wahl für die
Entwicklung leistungsstarker Automatisierungs- und Verwaltungsskripte. Das subprocess-Modul ist
die bevorzugte Methode, da es präzise Kontrolle und Sicherheit bietet. Durch das Verständnis dieser
Techniken können Sie die Stärken von Python und Bash optimal kombinieren, um Ihre Workflows
effizienter zu gestalten.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m122/learningunits/lu08/einfuehrung

Last update: 2024/12/09 10:31

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m122/learningunits/lu08/einfuehrung

	LU08a - Einführung Bash-Befehle in Python
	Warum Bash-Befehle in Python nutzen?
	Sicherheitshinweise
	Eingaben validieren
	Fehlerbehandlung

	Fazit

