2026/02/03 07:19 1/2 LUO8a - Einfihrung Bash-Befehle in Python

LUO8a - Einfuhrung Bash-Befehle in Python

Python ist nicht nur eine vielseitige Programmiersprache fir Anwendungen, Datenanalyse und
maschinelles Lernen, sondern eignet sich auch hervorragend, um mit der Kommandozeile zu
interagieren und Bash-Befehle auszufuhren. Diese Funktionalitat ist besonders nitzlich, wenn Sie
Skripte schreiben, die Prozesse automatisieren, Daten sammeln oder Systemaufgaben ausfuhren
mussen.

Warum Bash-Befehle in Python nutzen?

Die Integration von Bash-Befehlen in Python bietet die Mdglichkeit:

e vorhandene Bash-Skripte und Befehle wiederzuverwenden,

e komplexe Workflows zu automatisieren,

» sowohl die Vorteile von Python (Lesbarkeit, Datenverarbeitung) als auch von Bash
(Systemzugriff) zu kombinieren.

Sicherheitshinweise

Eingaben validieren

Vermeiden Sie die direkte Ubergabe von Benutzereingaben an Shell-Befehle, um Sicherheitsrisiken
wie Code-Injection zu verhindern.

Beispiel:

Unsicher: Benutzer kann Schadcode einschleusen
os.system(f"rm -rf {user input}"

Stattdessen:
subprocess.run(|'rm"', '-rf', user input check=True
Fehlerbehandlung

Uberpriifen Sie Riickgabecodes und Ausgaben auf Fehler.

subprocess

Bash-Befehl, der ausgefiuhrt werden soll
command "Ts -1 /"

Ausfihrung des Befehls

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2024/12/09 10:31 modul:m122:learningunits:lu08:einfuehrung https://wiki.bzz.ch/modul/m122/learningunits/lu08/einfuehrung

result subprocess.run

command # Der Befehl als String

shell=True # Ausfihrung in einer Shell

check=True # Fehler werfen, wenn der RiUckgabecode ungleich 0
ist

text=True # Gibt die Ausgaben als Strings zurlck (anstatt
Bytes)

stdout=subprocess.PIPE, # Standardausgabe umleiten

stderr=subprocess.PIPE # Standardfehlerausgabe umleiten

Ausgabe des Ergebnisses
"Befehl erfolgreich ausgefuhrt!"”
"Ruckgabecode:", result.returncode
"Ausgabe:"
result.stdout

subprocess.CalledProcessError e:

Fehlerbehandlung, wenn der Befehl fehlschlagt
"Fehler bei der Ausfihrung des Befehls!"
"Ruckgabecode:", e.returncode
"Fehlermeldung:"
e.stderr

Exception ex:

Generelle Fehlerbehandlung

f"Ein unerwarteter Fehler ist aufgetreten: {ex}"

Fazit

Python bietet flexible Werkzeuge zur Integration von Bash-Befehlen und ist eine ideale Wahl fur die
Entwicklung leistungsstarker Automatisierungs- und Verwaltungsskripte. Das subprocess-Modul ist
die bevorzugte Methode, da es prazise Kontrolle und Sicherheit bietet. Durch das Verstandnis dieser
Techniken kdnnen Sie die Starken von Python und Bash optimal kombinieren, um lhre Workflows
effizienter zu gestalten.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m122/learningunits/lu08/einfuehrung

Last update: 2024/12/09 10:31

https://wiki.bzz.ch/ Printed on 2026/02/03 07:19

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m122/learningunits/lu08/einfuehrung

	LU08a - Einführung Bash-Befehle in Python
	Warum Bash-Befehle in Python nutzen?
	Sicherheitshinweise
	Eingaben validieren
	Fehlerbehandlung

	Fazit

