2026/02/03 22:32 1/3 LUO8c - Python in der Linux-Shell

LUO8c - Python in der Linux-Shell

Pfade in WSL

Linux und Windows unterscheiden sich erheblich in der Art und Weise, wie sie mit Ordnerpfaden
umgehen. Hier sind die wesentlichen Unterschiede:

Pfad-Trennzeichen

e Linux: Verwendet den Schragstrich / als Trennzeichen zwischen Ordnern.
1. Beispiel: /home/user/documents

* Windows: Verwendet den Backslash \ als Trennzeichen.
1. Beispiel: C:\Users\User\Documents

Gross- und Kleinschreibung

e Linux: Unterscheidet zwischen Gros- und Kleinschreibung in Dateinamen und Ordnern. Das
bedeutet, dass File.txt und file.txt zwei unterschiedliche Dateien sein kénnen.

e Windows: Ignoriert standardmassig die GroB- und Kleinschreibung in Dateinamen. File.txt
und file.txt werden als dieselbe Datei betrachtet.

Pfadstruktur

e Linux:
o Es gibt ein einheitliches Wurzelverzeichnis /.
o Alle Laufwerke und Gerate werden unterhalb von / eingebunden (z. B. /mnt/drivel).
o Das Dateisystem folgt einer hierarchischen Struktur mit standardisierten Verzeichnissen
wie /etc, /bin, /usr, und /home.
e Windows:
o Jeder Laufwerksbuchstabe (z. B. C:, D:) hat sein eigenes Wurzelverzeichnis.
o Die Struktur ist nicht einheitlich und hangt von der Konfiguration und Installation ab.
o Benutzerverzeichnisse befinden sich oft unterhalb von C:\Users\<Benutzername>.

Absoluter vs. relativer Pfad

e Linux: Ein absoluter Pfad beginnt immer mit /, z. B. /home/user/file.
e Windows: Ein absoluter Pfad beginnt mit dem Laufwerksbuchstaben, z. B.
C:\Users\User\File.

In WSL sind die Laufwerke C:, D:, ... unter /mnt/
eingebunden. Um auf den Windowsordner C: \BZZ\Python
zuzugreifen, verwenden Sie in WSL /mnt/c/BZZ/Python.

BZZ - Modulwiki - https://wiki.bzz.ch/



Last update:
2024/12/10 modul:m122:learningunits:lu08:linux_python https://wiki.bzz.ch/modul/m122/learningunits/lu08/linux_python?rev=1733818526
09:15

Virtual Environment

In den meisten Fallen Uberlassen wir es unserer IDE, das Virtual Environment zu erstellen und zu
aktivieren. Falls wir unser Programm jedoch auf einem Server ausfuhren wollen, haben wir nur die
Shell zur Verfagung. In diesem Fall mussen wir uns selber um das venv kimmern.

Voraussetzung

Flr das erste Projekt in WSL muss zunachst pip installiert werden: sudo apt install python3-
pip.

Projekt erstellen

Ich gehe davon aus, dass ich einen Ordner mit einem Python-Projekt erstellt habe. Dieser kann
manuell mit mkdir coolproject erstellt werden. Méchte ich ein Projekt von GitHub verwenden,
kann ich den Ordner mit git clone erstellen.

git clone https://github.com/BZZ-Commons/python-template coolproject

Dieser Befehl klont das Projekt von GitHub in den Ordner coolproject.
Virtual Environment erstellen

Wir verwenden das Modul venv um unser Virtual Environment zu erstellen.

cd coolproject Wechsle in das Verzeichnis mit deinem Pythonprojekt

Flhre das Modul venv aus und lege fest, wo der Ordner fur das Virtual
Environment angelegt wird.

python3 -m venv ./venv

Mit Ls -1 kannst du prifen, ob der Ordner venv angelegt wurde.

Je nach Quelle wird der Zielordner venv oder .venv

genannt. Fur die Funktionalitat macht dies keinen
&3 Unterschied. In meinen Beispielen verwende ich den

Ordnernamen venv (ohne Punkt am Anfang).

Virtual Environment aktivieren

Bevor wir das Pythonprojekt ausfuhren, sollten wir das Virtual Environment aktiveren. Dadurch stellen
wir sicher, dass alle Anderungen an der Umgebung nur dieses Projekt betreffen und nicht

https://wiki.bzz.ch/ Printed on 2026/02/03 22:32



https://docs.python.org/3/library/venv.html

2026/02/03 22:32 3/3 LUO8c - Python in der Linux-Shell

systemweite Anderungen gemacht werden.

source venv/bin/activate
Anhand des Eingabeprompts erkennen wir, dass das Virtual Environment aktiviert ist:
(venv) user@system:

Um das Virtual Environment zu deaktivieren, gib den Befehl deactivate ein.
Abhangigkeiten installieren

In der Regel hat jedes Pythonprojekt eine Datei requirements.txt mit einer Liste der bendtigten
Pakete. Dies erleichtert die Installation der Pakete, wenn wir das Projekt von GitHub klonen.

Installiere die Pakete immer in ein aktiviertes Virtual
} Environment. Andernfalls wirden die Pakete systemweit
- installiert, was zu Konflikten zwischen verschiedenen
Projekten fUhren kann.

pip3 install -r requirements.txt

Skript ausfuhren

Nun kénnen wir unsere Pythonskripte ausflihren:

python3 main.py

M122-LU089

Marcel Suter

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m122/learningunits/lu08/linux_python?rev=1733818526

Last update: 2024/12/10 09:15

BZZ - Modulwiki - https://wiki.bzz.ch/


https://wiki.bzz.ch/tag/m122-lu089?do=showtag&tag=M122-LU089
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m122/learningunits/lu08/linux_python?rev=1733818526

	LU08c - Python in der Linux-Shell
	Pfade in WSL
	Pfad-Trennzeichen
	Gross- und Kleinschreibung
	Pfadstruktur
	Absoluter vs. relativer Pfad

	Virtual Environment
	Voraussetzung
	Projekt erstellen
	Virtual Environment erstellen
	Virtual Environment aktivieren
	Abhängigkeiten installieren
	Skript ausführen



