
2026/02/03 22:32 1/3 LU08c - Python in der Linux-Shell

BZZ - Modulwiki - https://wiki.bzz.ch/

LU08c - Python in der Linux-Shell

Pfade in WSL

Linux und Windows unterscheiden sich erheblich in der Art und Weise, wie sie mit Ordnerpfaden
umgehen. Hier sind die wesentlichen Unterschiede:

Pfad-Trennzeichen

Linux: Verwendet den Schrägstrich / als Trennzeichen zwischen Ordnern.
Beispiel: /home/user/documents1.

Windows: Verwendet den Backslash \ als Trennzeichen.
Beispiel: C:\Users\User\Documents1.

Gross- und Kleinschreibung

Linux: Unterscheidet zwischen Gros- und Kleinschreibung in Dateinamen und Ordnern. Das
bedeutet, dass File.txt und file.txt zwei unterschiedliche Dateien sein können.
Windows: Ignoriert standardmässig die Groß- und Kleinschreibung in Dateinamen. File.txt
und file.txt werden als dieselbe Datei betrachtet.

Pfadstruktur

Linux:
Es gibt ein einheitliches Wurzelverzeichnis /.
Alle Laufwerke und Geräte werden unterhalb von / eingebunden (z. B. /mnt/drive1).
Das Dateisystem folgt einer hierarchischen Struktur mit standardisierten Verzeichnissen
wie /etc, /bin, /usr, und /home.

Windows:
Jeder Laufwerksbuchstabe (z. B. C:, D:) hat sein eigenes Wurzelverzeichnis.
Die Struktur ist nicht einheitlich und hängt von der Konfiguration und Installation ab.
Benutzerverzeichnisse befinden sich oft unterhalb von C:\Users\<Benutzername>.

Absoluter vs. relativer Pfad

Linux: Ein absoluter Pfad beginnt immer mit /, z. B. /home/user/file.
Windows: Ein absoluter Pfad beginnt mit dem Laufwerksbuchstaben, z. B.
C:\Users\User\File.

In WSL sind die Laufwerke C:, D:, … unter /mnt/
eingebunden. Um auf den Windowsordner C:\BZZ\Python
zuzugreifen, verwenden Sie in WSL /mnt/c/BZZ/Python.



Last update:
2024/12/10
09:15

modul:m122:learningunits:lu08:linux_python https://wiki.bzz.ch/modul/m122/learningunits/lu08/linux_python?rev=1733818526

https://wiki.bzz.ch/ Printed on 2026/02/03 22:32

Virtual Environment

In den meisten Fällen überlassen wir es unserer IDE, das Virtual Environment zu erstellen und zu
aktivieren. Falls wir unser Programm jedoch auf einem Server ausführen wollen, haben wir nur die
Shell zur Verfügung. In diesem Fall müssen wir uns selber um das venv kümmern.

Voraussetzung

Für das erste Projekt in WSL muss zunächst pip installiert werden: sudo apt install python3-
pip.

Projekt erstellen

Ich gehe davon aus, dass ich einen Ordner mit einem Python-Projekt erstellt habe. Dieser kann
manuell mit mkdir coolproject erstellt werden. Möchte ich ein Projekt von GitHub verwenden,
kann ich den Ordner mit git clone erstellen.

git clone https://github.com/BZZ-Commons/python-template coolproject

Dieser Befehl klont das Projekt von GitHub in den Ordner coolproject.

Virtual Environment erstellen

Wir verwenden das Modul venv um unser Virtual Environment zu erstellen.

cd coolproject Wechsle in das Verzeichnis mit deinem Pythonprojekt

python3 -m venv ./venv Führe das Modul venv aus und lege fest, wo der Ordner für das Virtual
Environment angelegt wird.

Mit ls -l kannst du prüfen, ob der Ordner venv angelegt wurde.

Je nach Quelle wird der Zielordner venv oder .venv
genannt. Für die Funktionalität macht dies keinen
Unterschied. In meinen Beispielen verwende ich den
Ordnernamen venv (ohne Punkt am Anfang).

Virtual Environment aktivieren

Bevor wir das Pythonprojekt ausführen, sollten wir das Virtual Environment aktiveren. Dadurch stellen
wir sicher, dass alle Änderungen an der Umgebung nur dieses Projekt betreffen und nicht

https://docs.python.org/3/library/venv.html


2026/02/03 22:32 3/3 LU08c - Python in der Linux-Shell

BZZ - Modulwiki - https://wiki.bzz.ch/

systemweite Änderungen gemacht werden.

source venv/bin/activate

Anhand des Eingabeprompts erkennen wir, dass das Virtual Environment aktiviert ist:

(venv) user@system:

Um das Virtual Environment zu deaktivieren, gib den Befehl deactivate ein.

Abhängigkeiten installieren

In der Regel hat jedes Pythonprojekt eine Datei requirements.txt mit einer Liste der benötigten
Pakete. Dies erleichtert die Installation der Pakete, wenn wir das Projekt von GitHub klonen.

Installiere die Pakete immer in ein aktiviertes Virtual
Environment. Andernfalls würden die Pakete systemweit
installiert, was zu Konflikten zwischen verschiedenen
Projekten führen kann.

pip3 install -r requirements.txt

Skript ausführen

Nun können wir unsere Pythonskripte ausführen:

python3 main.py

M122-LU089

 Marcel Suter

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m122/learningunits/lu08/linux_python?rev=1733818526

Last update: 2024/12/10 09:15

https://wiki.bzz.ch/tag/m122-lu089?do=showtag&tag=M122-LU089
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m122/learningunits/lu08/linux_python?rev=1733818526

	LU08c - Python in der Linux-Shell
	Pfade in WSL
	Pfad-Trennzeichen
	Gross- und Kleinschreibung
	Pfadstruktur
	Absoluter vs. relativer Pfad

	Virtual Environment
	Voraussetzung
	Projekt erstellen
	Virtual Environment erstellen
	Virtual Environment aktivieren
	Abhängigkeiten installieren
	Skript ausführen



