
2026/02/07 06:11 1/4 LU09.A06: Bonus

BZZ - Modulwiki - https://wiki.bzz.ch/

LU09.A09: Unittests auflisten

Erstelle ein JSON-Array mit allen Unittests in einem Python-
Projekt.

Aufgabe

Das Skript durchsucht ein Projekt nach Dateien, die Unittests enthalten. Die Dateinamen müssen
test_ oder _test enthalten. Zum Beispiel:

test_main.py
main_test.py

Innerhalb dieser Dateien sucht das Skript nach Funktionen, deren Bezeichner mit test_ beginnt. Die
Bezeichner dieser Funktionen werden in eine Liste geschrieben. Schlussendlich wird diese Liste
sortiert und als JSON-Array ausgegeben.

Beispiel

[
 "test_figure_init_empty",
 "test_figure_add_shape",
 "test_figure_add_shape_multiple",
 "test_figure_take_shape",
 "test_figure_remove_shape_by_title",
 "test_figure_remove_shape_by_index",
 "test_figure_total_area_scale1",
 "test_figure_total_area_scale3",
 "test_figureshape_init_empty",
 "test_figureshape_set_figure",
 "test_figureshape_set_shape",
 "test_main"
]

Wieso Python und Bash?

Grundsätzlich könnte man die Aufgabe ausschliesslich mit Python lösen oder als reines Bash-Skript
schreiben. Jede Sprache hat jedoch ihre Vorteile, die wir hier ausnutzen wollen:

Dateien durchsuchen: Hier spielt Bash seine Stärke aus
Arbeiten mit Collections: Dies lässt sich leichter in Python umsetzen.

Last
update:
2024/12/10
07:07

modul:m122:learningunits:lu09:aufgaben:pytests https://wiki.bzz.ch/modul/m122/learningunits/lu09/aufgaben/pytests?rev=1733810834

https://wiki.bzz.ch/ Printed on 2026/02/07 06:11

Hinweise

Das Python-Skript kann nicht unter Windows ausgeführt
werden, da wir Bash-Befehle nutzen.

Um auf das Windows-Laufwerk C zuzugreifen, verwendest du
im WSL den Pfad /mnt/c.

Aufruf

Öffne das Windows Subsystem for Linux (WSL).1.
Wechsel in den Ordner, in dem Ihr Projekt gespeichert ist. Zum Beispiel: cd2.
„/mnt/c/BZZ/Python/m122-lu08-a02-listtest-ghwalin“
Starte das Python Skript mit python3 main.py ORDNER_PFAD. Ersetze ORDNER_PFAD durch3.
den Pfad zum gewünschten Projekt.

Vorgehen

Wie immer lohnt es sich, das Projekt schrittweise anzugehen. Jede Funktion innerhalb des Programms
kann einzeln realisiert und getestet werden.

Da wir auf einer reinen Linux-Shell keinen Debugger haben, behelfen wir uns mit print()-Befehlen
um die Zwischenresultate anzuzeigen.

1. Argument prüfen / übernehmen

In der Funktion main() prüfen wir das Argument „Pfad zum gewünschten Projekt“.

Falls kein Argument übergeben wurde, beendet das Programm mit einer Fehlermeldung
Wechsle in das angegebene Verzeichnis. Nutze dazu den Python-Befehl os.chdir(). 1)

Falls das Verzeichnis nicht existiert, wird das Skript mit einer Fehlermeldung beendet.

2. execute_bash

Die Funktion execute_bash soll die verschiedenen Bash-Befehle ausführen. Falls ein Fehler auftritt,
wird eine Meldung ausgegeben und das Skript beendet.

Parameter: Bash-Kommando (String)
Return: Resultat-Objekt

2026/02/07 06:11 3/4 LU09.A06: Bonus

BZZ - Modulwiki - https://wiki.bzz.ch/

3. find_test_modules

Diese Funktion sucht mit Hilfe eines Bash-Befehls im aktuellen Ordner nach allen Dateien, die
PyTests enthalten können. Als Returnwert liefert die Funktion eine Liste aller Dateinamen.

Diese Dateien können anhand ihres Dateinamens erkannt werden:

test_?????.py
?????_test.py

Ermittle zunächst den Bash-Befehl, um die
gewünschten Dateien in einem Ordner zu finden.
Teste den Befehl auf der Kommandozeile des WSL.

4. find_test_functions

Die Funktion durchsucht alle Dateien in einer Liste nach PyTest-Funktionen. Es sollen alle Zeilen
gefunden werden, die def test_ enthalten. \\Zum Beispiel:

def test_main():
def test_something(capsys):
…

Die gefundenen Zeilen werden an sanitize_function_name übergeben. Speichere die
„gereinigten“ Funktionsnamen in einer Liste

Argument: Eine Liste mit Dateinamen
Returnwert: Eine Liste mit allen PyTest-Funktionen.\\Zum Beispiel:

test_main
test_something

5. sanitize_function_name

Die Namen der Testfunktionen soll in dieser Funktion „gereinigt“ werden.

Argument: Eine Codezeile mit einer Test-Funktion, z.B. def test_something(capsys): #
Test some things
Returnwert: Der Name der Test-Funktion, z.B. test_something

Es werden alle sonstigen Angaben in dieser Zeile entfernt:

Das Schlüsselwort def.
Leerzeichen am Anfang und am Ende.
Die Liste mit den Parametern.
Der Doppelpunkt
Allfällige Zeilenkommentare

Last
update:
2024/12/10
07:07

modul:m122:learningunits:lu09:aufgaben:pytests https://wiki.bzz.ch/modul/m122/learningunits/lu09/aufgaben/pytests?rev=1733810834

https://wiki.bzz.ch/ Printed on 2026/02/07 06:11

6. output_json

Die Funktion erzeugt ein JSON-Array mit den Namen aller Testfunktionen. Dieses JSON-Array wird in
der Konsole ausgegeben.

Argument: Liste mit Namen von Testfunktionen.
Returnwert: None

Bonus-Auftrag

In der Vorlage ist bereits eine Funktion select_project() vorhanden. Diese öffnet ein Fenster, in
dem der Benutzer das gewünschte Projekt auswählen kann.

Ergänze den Ablauf in main(), dass diese Funktion aufgerufen wird, falls kein Argument übergeben
wurde.

Die Funktion select_project nutze ein Linux-Paket, dass
in WSL nicht standardmässig installiert ist. Um es zu
installieren, benötigst du die Befehle:

sudo apt update
sudo apt install zenity

M122-LU09

 Marcel Suter

1)

Man könnte auch den Bash-Befehl cd verwenden, dieser ändert das Verzeichnis aber nur temporär.
Dann müssten wir bei jedem Bash-Befehl das Verzeichnis explizit angeben.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m122/learningunits/lu09/aufgaben/pytests?rev=1733810834

Last update: 2024/12/10 07:07

https://wiki.bzz.ch/tag/m122-lu09?do=showtag&tag=M122-LU09
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m122/learningunits/lu09/aufgaben/pytests?rev=1733810834

	LU09.A09: Unittests auflisten
	Aufgabe
	Beispiel
	Wieso Python und Bash?

	Hinweise
	Aufruf

	Vorgehen
	1. Argument prüfen / übernehmen
	2. execute_bash
	3. find_test_modules
	4. find_test_functions
	5. sanitize_function_name
	6. output_json

	Bonus-Auftrag

