2026/02/07 06:11 1/4 LU09.A06: Bonus

LU09.A09: Unittests auflisten

Erstelle ein JSON-Array mit allen Unittests in einem Python-

) Projekt.

Aufgabe

Das Skript durchsucht ein Projekt nach Dateien, die Unittests enthalten. Die Dateinamen missen
test oder test enthalten. Zum Beispiel:

e test_main.py
e main_test.py

Innerhalb dieser Dateien sucht das Skript nach Funktionen, deren Bezeichner mit test beginnt. Die
Bezeichner dieser Funktionen werden in eine Liste geschrieben. Schlussendlich wird diese Liste
sortiert und als JSON-Array ausgegeben.

Beispiel

"test figure init empty",

“test figure add shape",

“test figure add shape multiple”,
“test figure take shape",

"test figure remove shape by title",
"“test figure remove shape by index",
"test fiqure total area scalel",
“test figure total area scale3",
“test figureshape init empty",

“test figureshape set figure",

"“test figureshape set shape",

"test main"

Wieso Python und Bash?
Grundsatzlich kénnte man die Aufgabe ausschliesslich mit Python |6sen oder als reines Bash-Skript
schreiben. Jede Sprache hat jedoch ihre Vorteile, die wir hier ausnutzen wollen:

e Dateien durchsuchen: Hier spielt Bash seine Starke aus
» Arbeiten mit Collections: Dies lasst sich leichter in Python umsetzen.

BZZ - Modulwiki - https://wiki.bzz.ch/



Last

update: modul:m122:learningunits:lu09:aufgaben:pytests https://wiki.bzz.ch/modul/m122/learningunits/lu09/aufgaben/pytests?rev=1733810834

2024/12/10

07:07

Hinweise
Das Python-Skript kann nicht unter Windows ausgefuhrt
werden, da wir Bash-Befehle nutzen.

- Um auf das Windows-Laufwerk C zuzugreifen, verwendest du

im WSL den Pfad /mnt/c.

Aufruf

1. Offne das Windows Subsystem for Linux (WSL).

2. Wechsel in den Ordner, in dem lhr Projekt gespeichert ist. Zum Beispiel: cd
»/mnt/c/BZZ/Python/m122-1u08-a02-listtest-ghwalin“

3. Starte das Python Skript mit python3 main.py ORDNER PFAD. Ersetze ORDNER PFAD durch
den Pfad zum gewdinschten Projekt.

Vorgehen

Wie immer lohnt es sich, das Projekt schrittweise anzugehen. Jede Funktion innerhalb des Programms
kann einzeln realisiert und getestet werden.

Da wir auf einer reinen Linux-Shell keinen Debugger haben, behelfen wir uns mit print ()-Befehlen
um die Zwischenresultate anzuzeigen.

1. Argument priifen / ibernehmen

In der Funktion main () prufen wir das Argument ,Pfad zum gewlnschten Projekt”.

e Falls kein Argument Ubergeben wurde, beendet das Programm mit einer Fehlermeldung
 Wechsle in das angegebene Verzeichnis. Nutze dazu den Python-Befehl os.chdir(). "
* Falls das Verzeichnis nicht existiert, wird das Skript mit einer Fehlermeldung beendet.

2. execute_bash
Die Funktion execute bash soll die verschiedenen Bash-Befehle ausflhren. Falls ein Fehler auftritt,
wird eine Meldung ausgegeben und das Skript beendet.

e Parameter: Bash-Kommando (String)
e Return: Resultat-Objekt

https://wiki.bzz.ch/ Printed on 2026/02/07 06:11



2026/02/07 06:11 3/4 LU09.A06: Bonus

3. find_test_modules

Diese Funktion sucht mit Hilfe eines Bash-Befehls im aktuellen Ordner nach allen Dateien, die
PyTests enthalten kdnnen. Als Returnwert liefert die Funktion eine Liste aller Dateinamen.

Diese Dateien konnen anhand ihres Dateinamens erkannt werden:

e Ermittle zunachst den Bash-Befehl, um die
- gewdunschten Dateien in einem Ordner zu finden.
g e Teste den Befehl auf der Kommandozeile des WSL.

4. find_test_functions

Die Funktion durchsucht alle Dateien in einer Liste nach PyTest-Funktionen. Es sollen alle Zeilen
gefunden werden, die def test enthalten. \\Zum Beispiel:

e def test_ main():
e def test something(capsys):

Die gefundenen Zeilen werden an sanitize function name Ubergeben. Speichere die
~gereinigten” Funktionsnamen in einer Liste

e Argument: Eine Liste mit Dateinamen

e Returnwert: Eine Liste mit allen PyTest-Funktionen.\\Zum Beispiel:
o test_main
o test something

5. sanitize_function_name

Die Namen der Testfunktionen soll in dieser Funktion ,gereinigt” werden.

e Argument: Eine Codezeile mit einer Test-Funktion, z.B. def test something(capsys): #
Test some things
e Returnwert: Der Name der Test-Funktion, z.B. test something

Es werden alle sonstigen Angaben in dieser Zeile entfernt:

e Das Schlusselwort def.

Leerzeichen am Anfang und am Ende.
Die Liste mit den Parametern.

Der Doppelpunkt

Allfallige Zeilenkommentare

BZZ - Modulwiki - https://wiki.bzz.ch/



Last
update:
2024/12/10
07:07

modul:m122:learningunits:lu09:aufgaben:pytests https://wiki.bzz.ch/modul/m122/learningunits/lu09/aufgaben/pytests?rev=1733810834

6. output_json
Die Funktion erzeugt ein JSON-Array mit den Namen aller Testfunktionen. Dieses JSON-Array wird in
der Konsole ausgegeben.

e Argument: Liste mit Namen von Testfunktionen.
e Returnwert: None

Bonus-Auftrag

In der Vorlage ist bereits eine Funktion select project() vorhanden. Diese 6ffnet ein Fenster, in
dem der Benutzer das gewinschte Projekt auswahlen kann.

Erganze den Ablauf in main (), dass diese Funktion aufgerufen wird, falls kein Argument tbergeben
wurde.

Die Funktion select project nutze ein Linux-Paket, dass
in WSL nicht standardmassig installiert ist. Um es zu

@ installieren, benétigst du die Befehle:

sudo apt update
sudo apt install zenity

M122-LU09

Marcel Suter

1)
Man kénnte auch den Bash-Befehl cd verwenden, dieser andert das Verzeichnis aber nur temporar.
Dann mussten wir bei jedem Bash-Befehl das Verzeichnis explizit angeben.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

Last update: 2024/12/10 07:07

https://wiki.bzz.ch/ Printed on 2026/02/07 06:11


https://wiki.bzz.ch/tag/m122-lu09?do=showtag&tag=M122-LU09
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m122/learningunits/lu09/aufgaben/pytests?rev=1733810834

	LU09.A09: Unittests auflisten
	Aufgabe
	Beispiel
	Wieso Python und Bash?

	Hinweise
	Aufruf

	Vorgehen
	1. Argument prüfen / übernehmen
	2. execute_bash
	3. find_test_modules
	4. find_test_functions
	5. sanitize_function_name
	6. output_json

	Bonus-Auftrag


