2026/02/03 07:19 1/5

LU09.L02: Unittests auflisten

LU09.L02: Unittests auflisten

main.py
json
0s
subprocess
Sys
main
Main function
:return: None
len(sys.argv 2:
'Please provide the path to the project folder as an
argument.'

sys.exit(1
folder path sys.argv[l] # select project()

os.chdir(folder path
FileNotFoundError:

f'The folder {folder path} does not exist.'
sys.exit(1

test modules = find test modules(folder path

test functions
module test modules:

new functions = find test functions(file name-module
path=folder path

test functions.extend(new functions

output json(test functions

select project
Asks the user to select the project folder
:return: path to the project folder

Run the zenity command to open a directory selection dialog
result subprocess.run

"zenity", "--file-selection", "--directory", "--
title=Select a Directory"

text=True, # Capture output as string
stdout=subprocess.PIPE, # Redirect standard output

BZZ - Modulwiki - https://wiki.bzz.ch/

https://github.com/BZZ-Commons/m122-lu08-a02-listtests/blob/solution/main.py

Last update: ; . . .
2024/12/10 07:07 modul:m122:learningunits:lu09:loesungen:pytests https://wiki.bzz.ch/modul/m122/learningunits/lu09/loesungen/pytests

stderr=subprocess.PIPE # Redirect standard error

Check if a directory was selected

if result.returncode 0: # Return code 0 means success
return result[1l].strip # Return the selected directory
else:
print("No directory was selected."
return ""

except FileNotFoundError:
print("Zenity is not installed. Please install it using 'sudo
apt install zenity'."
return ""
except Exception as e:
print(f"An error occurred: {e}"
return ""

def find test modules(path="'."
Searches for files matching test *.py or * test.py in the specified
folder using a Bash command.

Parameters
path : str
The path to the folder to search in. Default is the current
Returns
List[str]
A list of matching file paths.

Define the Bash command to search for test files
command f'ls {path} | grep -E "test .*\.py| test\.py"'
result = execute bash(command

Split the output into lines to get a list of file paths
if result[1l]:

files result[1].strip

file list = files.split('\n'

return file list
return

det find test functions(file name, path='."

Searches for test functions in the specified file using a Bash
command.

Parameters

https://wiki.bzz.ch/ Printed on 2026/02/03 07:19

2026/02/03 07:19 3/5 LU09.L02: Unittests auflisten

path : str
The path to the folder to search in. Default is the current
directory.
file name : str
The name of the file to search in.
Returns
List[str]
A list of test function names.
Define the Bash command to search for test functions in the file
command = f'grep -E "def test *" "{path}/{file name}"'
result = execute bash(command

Split the output into lines to get a list of function names
if result[l
functions result|[1].strip
function list functions.split(‘\n'
for i in range(len(function list
function list[i sanitize function name(function list|i
return function list

return

def sanitize function_name(function_ name
Sanitize the function name by removing the 'def ' prefix and any
leading/trailing whitespace.
Parameters
function name : str
The function names to sanitize.
Returns

The sanitized function names.
remove the 'def ' prefix and any leading/trailing whitespace
function name = function name.replace(‘'def ', '').strip
remove the arguments including the colon and brackets
function name = function name.split('(')[0
return function name

def output json(test functions

Qutput the test functions as a JSON string.
Parameters

test functions : List[str]

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:

2024/12/10 07:07 modul:m122:learningunits:lu09:loesungen:pytests https://wiki.bzz.ch/modul/m122/learningunits/lu09/loesungen/pytests

A list of test function names.
json_str json.dumps(test functions, indent=4
json str

execute bash(command
Execute a Bash command and return the result.
Parameters
command : str
The Bash command to execute.
Returns
subprocess.CompletedProcess
The result of the command execution.

result subprocess.run
command
shell=True, # Use a shell to interpret the command
check=True, # Raise an error if the command fails
text=True, # Capture output as a string
stdout=subprocess.PIPE, # Redirect standard output
stderr=subprocess.PIPE # Redirect standard error

result.returncode, result.stdout
subprocess.CalledProcessError e:
f'Error executing the command: {e.cmd}'
f'Error message: {e.stderr}'

sys.exit(1
Exception ex:
f'An unexpected error occurred: {ex}'
sys.exit(1
__hame_ ' main_ ':
main

M122-LUO9

Marcel Suter

https://wiki.bzz.ch/ Printed on 2026/02/03 07:19

https://wiki.bzz.ch/tag/m122-lu09?do=showtag&tag=M122-LU09
https://creativecommons.org/licenses/by-nc-sa/4.0/

2026/02/03 07:19 5/5 LU09.L02: Unittests auflisten

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m122/learningunits/lu09/loesungen/pytests

Last update: 2024/12/10 07:07

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m122/learningunits/lu09/loesungen/pytests

	LU09.L02: Unittests auflisten

