
2025/11/29 16:06 1/4 LU03g - Sicherheitsanforderungen

BZZ - Modulwiki - https://wiki.bzz.ch/

LU03g - Sicherheitsanforderungen

Merke! Eine Applikation kann nur so sicher sein, wie das Umfeld, in dem sie betrieben wird. Dies gilt
für die Infrastruktur genauso, wie für die Architektur und die Implementierung.

1. Einleitung

Die Anforderungen an die Sicherheit einer Applikation (Programm) sollen bereits zu Beginn der
Entwicklung ermittelt und abgestimmt werden. Eine nachträgliche Implementierung von
Sicherheitsmassnahmen ist bedeutend teurer und bietet im Allgemeinen weniger Schutz als
Sicherheit, die von Beginn an in den Systementwicklungsprozess oder in den Auswahlprozess für ein
Produkt integriert wurde.

Abbildung:
Sicherheitsanforderungen
können nur greifen, wenn
diese im gesamten SW-
Entwicklungszyklus
berücksichtigt werden

Sicherheit sollte daher integrierter Bestandteil des gesamten Lebenszyklus einer Applikation (SDLC)
bzw. Produktes sein. Eine Applikation (Programm) besitzt ein Umfeld, in welchem sie betrieben wird.
Ein sich ereignender Systemprozess (Geschäftsprozess) stösst eine Applikation zur Bearbeitung an
(Anfrage). Diese erfüllt die angeforderte Dienstleistung und gibt ein erarbeitetes und erwartetes
Ergebnis (Resultat) zurück. Dabei greifen die Funktionen einer Applikation über ein logisches und
physisches Datenmodell auf die Daten zu. In diesem Verfahren gibt es verschiedene Bereiche, die
kontrolliert ablaufen müssen. Nebst der Qualität der Applikationsfunktionen (korrekte Abläufe,
Berechnungen, etc.) sind die Sicherheitsbelangen auf allen Ebenen.

2. Grundprinzip der sicheren SW-Entwicklung

Die folgenden Prinzipien sollten in jedem Projekt von Anfang an berücksichtigt werden:

https://wiki.bzz.ch/_detail/modul/m183/learningunits/lu03/v-modell-wissen-kompakt.png?id=modul%3Am183%3Alearningunits%3Alu03%3A07


Last update: 2025/08/22 12:37 modul:m183:learningunits:lu03:07 https://wiki.bzz.ch/modul/m183/learningunits/lu03/07

https://wiki.bzz.ch/ Printed on 2025/11/29 16:06

Security by Design: Sicherheit ist kein nachträgliches Feature, sondern muss in Architektur
und Design integriert sein.
Least Privilege: Jeder Code-Abschnitt, jede Komponente, jeder Benutzer bekommt nur so viel
Rechte wie absolut nötig.
Fail Secure: Im Fehlerfall muss das System in einen sicheren Zustand übergehen.
Defense in Depth: Mehrstufige Sicherheitsmaßnahmen bieten auch dann Schutz, wenn eine
Ebene versagt.
Minimierung der Angriffsfläche: Weniger exponierte Funktionen bedeuten weniger
potenzielle Angriffsvektoren.

3. Sicherheitsanforderungen

3.1 Authentifizierung und Autorisierung

Unterstützung starker Authentifizierungsmechanismen (z. B. OAuth2, MFA)
Rollenkonzepte zur feingranularen Rechtevergabe
Session-Management mit begrenzter Lebensdauer

3.2 Daten- und Kommunikation

Verschlüsselung sensibler Daten (ruhend und in Übertragung)
Einsatz von TLS 1.2 oder höher
Keine sensiblen Daten im Klartext loggen oder speichern

3.3 Eingabeverarbeitung

Validierung aller Benutzereingaben (Client- & Server-seitig)
Schutz gegen SQL-Injection, Cross-Site Scripting (XSS), CSRF etc.
Whitelisting statt Blacklisting

3.4 Fehlerbehandlung und Logging

Fehlermeldungen dürfen keine internen Informationen preisgeben
Logging sicherheitsrelevanter Ereignisse mit Integritätsschutz
Protokollrotation und -archivierung

3.5 Drittanbieter-Software und Bibliotheken

Nur verifizierte, regelmäßig gepflegte Bibliotheken verwenden
Schwachstellenprüfung mit Tools wie OWASP Dependency-Check
Automatisiertes Patch- und Update-Management



2025/11/29 16:06 3/4 LU03g - Sicherheitsanforderungen

BZZ - Modulwiki - https://wiki.bzz.ch/

4. Entwicklungsprozess-bezogene Anforderungen

4.1 Schulung und Awareness

Alle Entwickler müssen regelmäßig in Secure Coding geschult werden
Awareness für aktuelle Bedrohungen (z. B. OWASP Top 10)

4.2 Codeanalyse und Tests

Statische und dynamische Codeanalyse verpflichtend
Security Unit-Tests und Penetrationstests
Regelmäßige Code-Reviews mit Fokus auf Sicherheitsaspekte

4.3 DevSecOps

Integration von Sicherheit in die CI/CD-Pipeline
Automatisierte Schwachstellenprüfungen bei jedem Build
Secrets-Management (z. B. HashiCorp Vault)

5. Dokumentation und Nachvollziehbarkeit

Sicherheitsanforderungen müssen dokumentiert und versioniert sein
Architekturentscheidungen im Hinblick auf Sicherheit müssen nachvollziehbar sein
Änderungsmanagement mit Sicherheitsbewertung

6. Compliance und gesetzliche Anforderungen

Einhaltung relevanter Standards (z. B. ISO 27001, BSI-Grundschutz, GDPR/DSGVO)
Umsetzung branchenspezifischer Vorgaben (z. B. KRITIS, PCI-DSS)
Auditierbarkeit und Nachweisführung über implementierte Sicherheitsmaßnahmen

7. Fazit

Zusammenfassend kann gesagt werden, dass Sicherheitsanforderungen kein lästiger Ballast, sondern
ein integraler Bestandteil professioneller Softwareentwicklung, sind. Wer hier spart, zahlt später – sei
es mit Datenschutzpannen, Imageschäden oder rechtlichen Konsequenzen.

9. Quellennachweis Bilder

https://t2informatik.de/wissen-kompakt/v-modell/

https://t2informatik.de/wissen-kompakt/v-modell/


Last update: 2025/08/22 12:37 modul:m183:learningunits:lu03:07 https://wiki.bzz.ch/modul/m183/learningunits/lu03/07

https://wiki.bzz.ch/ Printed on 2025/11/29 16:06

 Volkan Demir

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m183/learningunits/lu03/07

Last update: 2025/08/22 12:37

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m183/learningunits/lu03/07

	LU03g - Sicherheitsanforderungen
	1. Einleitung
	2. Grundprinzip der sicheren SW-Entwicklung
	3. Sicherheitsanforderungen
	3.1 Authentifizierung und Autorisierung
	3.2 Daten- und Kommunikation
	3.3 Eingabeverarbeitung
	3.4 Fehlerbehandlung und Logging
	3.5 Drittanbieter-Software und Bibliotheken

	4. Entwicklungsprozess-bezogene Anforderungen
	4.1 Schulung und Awareness
	4.2 Codeanalyse und Tests
	4.3 DevSecOps

	5. Dokumentation und Nachvollziehbarkeit
	6. Compliance und gesetzliche Anforderungen
	7. Fazit
	9. Quellennachweis Bilder


