2025/12/15 21:29 1/5 LU11c - SQLi Gegenmassnahmen

LUllc - SQLi Gegenmassnahmen

Glucklicherweise gibt gegen alle SQLi-Varianten entsprechende Gegenmassnahmen. Die hier
vorliegende Liste ist daher nur ein Ausschnitt mit den prominentesten.

Escaping

Beim escaping werden Sonderzeichen nicht direkt in die Datenbank weitergeleitet. Die vom User
eingegebenen Werte werden durch eine entsprechende Funktion/Methode, die es in vielen
Programmiersprachen gibt vor der Weiterleitung gefiltert. Sonderzeichen, die den Angriffspunkt
darstelle, werden von gefédhrlichen Steuerzeichen in harmlose Characters umgewandelt.Das
~Escapen” kann dabei auf der Client- und Serverseite geschehen.

Escaping — context cont.

m Different RDBMS have different ways of escaping data
(it also depends on configuration)

m addslashes() works just like MySQL only ,by chance”
PDO ¢pdo->quote($val, $type) n/a (it depends)

MySQL (mysgl) mysgl real escape string 1\ 've got quotes

MySQL (mysgl) mysqli_real escape string i\ 've got quotes

Oracle (oci8) n/d-str replacel() 1''ve got quotes

SQLite sqlite_escape_string i''ve got quotes
MS SQL (mssql) n/d-str replace() i''ve got quotes
PostgreSQL pg_escape_string() i''ve got quotes

OWASP 0

Das Hauptproblem bei SQLI besteht darin, dass Werte ungeprift in die Datenbank weitergegeben
werden, wobei Platzhalter mit vom User zur Laufzeit eingegebenen Werten angereichert werden.
Enthalt eine solcher zur Laufzeit generierte SQL-Anweisung Injektion, wird diese ungepruft und
ungepuffert an die DB weitergeleitet.

Parametrisierte Werteubergabe

Die parametrisierte Wertelbergabe, kurz Parametrisierung genannt, kann eine maogliche
Gegenmassnahme gegen SQLI sein. Dabei werden die von User eingegebenen Werte in lokale

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/modul/m183/learningunits/lu10/lu10_c1.png?id=modul%3Am183%3Alearningunits%3Alu11%3A03

Last update: 2025/12/08 10:37 modul:m183:learningunits:lul1:03 https://wiki.bzz.ch/modul/m183/learningunits/lu11/03

Parameter geschrieben. Diese Werte werden dann einen Schritt spater durch Platzhalter in das SQL-
Statement eingefugt.

Beispiel mit JavaScript/MySQL-Beispiel

// 1. Schritt: Zusammenbau des SQL-Statements mit Platzhaltern
const sqll = °

UPDATE Production.ProductInventory

SET Quantity = @qty

WHERE ProductID = @productld

’

// 2. Schritt: Parametrisieren der Ubergabewerte
const qty = 10;
const productld = 709;

// 3. Schritt: Zusammenbauen und Ausfuhren mit Laufzeitwerten
const sql = require('mssql');
async function updateInventory() {
try {
// Verbindung herstellen (Beispielconfig anpassen!)
const pool = await sql.connect({
user: ‘'username’,
password: 'password',
server: 'localhost’',
database: 'AdventureWorks'
})s
//
const request = pool.request();
request.input('qty', sql.Int, qty);
request.input('productId', sql.Int, productId);

//
const result = await request.query(sqll);
console.log('Update erfolgreich:', result.rowsAffected);
} catch (err) {
console.error('Fehler beim Update:', err);
}
}
updateInventory();
Input Validation

Input Validation bedeutet, dass alle Eingaben aus unsicheren Quellen (User, Formulare, API-Aufrufe,
Cookies, Query-Strings, etc.) mussen Uberprift werden, bevor sie in die Anwendung oder die
Datenbank gelangen. Das Ziel ist es nur Werte zulassen, die dem erwarteten Format entsprechen.
Alles andere wird abgelehnt oder bereinigt.

Oder kurz: Traue nie dem Input - prufe ihn, bevor du ihn anfasst.

https://wiki.bzz.ch/ Printed on 2025/12/15 21:29

2025/12/15 21:29 3/5 LU11c - SQLi Gegenmassnahmen

Prepared Statement

Ein Prepared Statement trennt klar Code (das SQL) von Daten (Benutzereingaben). Dadurch kann ein
Angreifer die Struktur der Abfrage nicht durch manipulierte Eingaben verandern — und genau das ist
der Kern jeder SQL-Injection.

Wie funktionieren sie?

1. Die Anwendung schickt ein SQL-Template an die Datenbank, in dem Platzhalter statt konkreter
Werte stehen.
o Beispiel (pseudo): SELECT * FROM users WHERE id = ?
2. Die Datenbank parst und compiliert dieses Template, legt einen Ausfuehrungsplan an.
3. Zur Laufzeit werden die Platzhalter separat mit Werten gefuellt — diese Werte werden nie als
Teil des SQL-Codes interpretiert, sondern rein als Daten behandelt.

Ergebnis: Eingaben wie 1; DROP TABLE users; koennen nicht als zusatzlicher SQL-Code ausgefuehrt
werden — sie landen als sicherer Datenwert in der Abfrage.

Warum das gegen SQLi hilft

e Trennung von Code und Daten: Eingaben koennen die SQL-Syntax nicht mehr verandern.

¢ Schutz gegen die meisten Angriffsvarianten: Union-, Error- und Blind-SQLi werden dadurch
weitgehend unwirksam, weil die Datenbank die Struktur bereits fixiert hat.

e Performance-Bonus: Bei wiederholten Abfragen wird der vorbereitete Plan wiederverwendet —
das ist ein netter Nebeneffekt.

Beispiel JavaScript Die Werte in [...] sind rein Daten — kein Code.

// Platzhalter $1, $2 — Parameter separat uebergeben

const sql = 'UPDATE Production.ProductInventory SET Quantity = $1 WHERE
ProductID = $2';

await client.query(sql, [quantity, productId]);

Stored Procedure

Kurzfassung zuerst: Stored Procedures (SPs) verlagern SQL-Logik in die Datenbank. Richtig verwendet
trennen sie Code (die prozedurale Logik in der DB) von Daten (die Parameter), reduzieren
Angriffsflachen und erleichtern Zugriffssteuerung. Keine Zauberformel — sie helfen, sind aber kein
Freifahrtschein.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2025/12/08 10:37 modul:m183:learningunits:lul1:03 https://wiki.bzz.ch/modul/m183/learningunits/lu11/03

— Template generated from Template Explorer using:
-— Create Procedure (New Menu).SQL

— Use the Specify Values for Template Parameters
— command (Ctrl-Shift-M) to fill in the parameter
—— values below.

—— This block of comments will not be included in
-— the definition of the procedure.

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

— Author: <Author, ,Name>

—— Create date: <Create Date,,>
—-- Description: <Description,,>

CREATE PROCEDURE <Procedure_Name, sysname, ProcedureName>
-=- Add the parameters for the stored procedure here

<@Paraml, sysname, @pl> <Datatype_For_Paraml, , int> <Default_Value_For_Paraml, , 8=,
<@Param2, sysname, @p2> <Datatype_For_Paramz, , int> <Default_Value_For_Param2, , 0>
AS
BEGIN

—— SET NOCOUNT ON added to prevent extra result sets from
-— interfering with SELECT statements.
SET NOCOUNT ON

I ert tatement for cedure here
SELECT <@Paraml, sysname, @pl=, <@Param2, sysname, @p2=
END
GO

Wie stored procedures grundsatzlich schiitzen

e Die SQL-Struktur liegt in der Datenbank und nicht in applikationsseitig zusammengesetzten
Strings.

e Parameter werden (wenn sie als Parameter benutzt werden) von der DB engine als Daten
behandelt — nicht als Teil des SQL-Codes.

e DB-Accounts kdnnen nur EXECUTE-Rechte auf die SP erhalten, nicht direkte
SELECT/UPDATE/DELETE-Rechte auf Tabellen. Damit wird least privilege einfacher durchsetzbar.

e SPs erlauben zentralisierte Validierung/Logging und vereinfachen Auditing.

Kurz: SP machen es einem Angreifer schwerer, per manipulierten Input die Abfrage-Struktur zu
verandern — sofern diese nicht durch unsauberen Code zunichte gemacht wurde.

Volkan Demir

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m183/learningunits/lul11/03

Last update: 2025/12/08 10:37

https://wiki.bzz.ch/ Printed on 2025/12/15 21:29

https://wiki.bzz.ch/_detail/modul/m183/learningunits/lu10/lu10c_2.png?id=modul%3Am183%3Alearningunits%3Alu11%3A03
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m183/learningunits/lu11/03

2025/12/15 21:29 5/5 LU11c - SQLi Gegenmassnahmen

BZZ - Modulwiki - https://wiki.bzz.ch/

	LU11c - SQLi Gegenmassnahmen
	Escaping
	Parametrisierte Werteübergabe
	Input Validation
	Prepared Statement
	Stored Procedure

