
2025/12/15 21:29 1/5 LU11c - SQLi Gegenmassnahmen

BZZ - Modulwiki - https://wiki.bzz.ch/

LU11c - SQLi Gegenmassnahmen

Glücklicherweise gibt gegen alle SQLi-Varianten entsprechende Gegenmassnahmen. Die hier
vorliegende Liste ist daher nur ein Ausschnitt mit den prominentesten.

Escaping

Beim escaping werden Sonderzeichen nicht direkt in die Datenbank weitergeleitet. Die vom User
eingegebenen Werte werden durch eine entsprechende Funktion/Methode, die es in vielen
Programmiersprachen gibt vor der Weiterleitung gefiltert. Sonderzeichen, die den Angriffspunkt
darstelle, werden von gefährlichen Steuerzeichen in harmlose Characters umgewandelt.Das
„Escapen“ kann dabei auf der Client- und Serverseite geschehen.

Das Hauptproblem bei SQLI besteht darin, dass Werte ungeprüft in die Datenbank weitergegeben
werden, wobei Platzhalter mit vom User zur Laufzeit eingegebenen Werten angereichert werden.
Enthält eine solcher zur Laufzeit generierte SQL-Anweisung Injektion, wird diese ungeprüft und
ungepuffert an die DB weitergeleitet.

Parametrisierte Werteübergabe

Die parametrisierte Werteübergabe, kurz Parametrisierung genannt, kann eine mögliche
Gegenmassnahme gegen SQLI sein. Dabei werden die von User eingegebenen Werte in lokale

https://wiki.bzz.ch/_detail/modul/m183/learningunits/lu10/lu10_c1.png?id=modul%3Am183%3Alearningunits%3Alu11%3A03

Last update: 2025/12/08 10:37 modul:m183:learningunits:lu11:03 https://wiki.bzz.ch/modul/m183/learningunits/lu11/03

https://wiki.bzz.ch/ Printed on 2025/12/15 21:29

Parameter geschrieben. Diese Werte werden dann einen Schritt später durch Platzhalter in das SQL-
Statement eingefügt.

Beispiel mit JavaScript/MySQL-Beispiel

// 1. Schritt: Zusammenbau des SQL-Statements mit Platzhaltern
const sql1 = `
 UPDATE Production.ProductInventory
 SET Quantity = @qty
 WHERE ProductID = @productId
`;

// 2. Schritt: Parametrisieren der Übergabewerte
const qty = 10;
const productId = 709;

// 3. Schritt: Zusammenbauen und Ausführen mit Laufzeitwerten
const sql = require('mssql');
async function updateInventory() {
 try {
 // Verbindung herstellen (Beispielconfig anpassen!)
 const pool = await sql.connect({
 user: 'username',
 password: 'password',
 server: 'localhost',
 database: 'AdventureWorks'
 });
 //
 const request = pool.request();
 request.input('qty', sql.Int, qty);
 request.input('productId', sql.Int, productId);
 //
 const result = await request.query(sql1);
 console.log('Update erfolgreich:', result.rowsAffected);
 } catch (err) {
 console.error('Fehler beim Update:', err);
 }
}
updateInventory();

Input Validation

Input Validation bedeutet, dass alle Eingaben aus unsicheren Quellen (User, Formulare, API-Aufrufe,
Cookies, Query-Strings, etc.) müssen überprüft werden, bevor sie in die Anwendung oder die
Datenbank gelangen. Das Ziel ist es nur Werte zulassen, die dem erwarteten Format entsprechen.
Alles andere wird abgelehnt oder bereinigt.

Oder kurz: Traue nie dem Input – prüfe ihn, bevor du ihn anfasst.

2025/12/15 21:29 3/5 LU11c - SQLi Gegenmassnahmen

BZZ - Modulwiki - https://wiki.bzz.ch/

Prepared Statement

Ein Prepared Statement trennt klar Code (das SQL) von Daten (Benutzereingaben). Dadurch kann ein
Angreifer die Struktur der Abfrage nicht durch manipulierte Eingaben verändern — und genau das ist
der Kern jeder SQL-Injection.

Wie funktionieren sie?

Die Anwendung schickt ein SQL-Template an die Datenbank, in dem Platzhalter statt konkreter1.
Werte stehen.

Beispiel (pseudo): SELECT * FROM users WHERE id = ?
Die Datenbank parst und compiliert dieses Template, legt einen Ausfuehrungsplan an.2.
Zur Laufzeit werden die Platzhalter separat mit Werten gefuellt — diese Werte werden nie als3.
Teil des SQL-Codes interpretiert, sondern rein als Daten behandelt.

Ergebnis: Eingaben wie 1; DROP TABLE users; koennen nicht als zusätzlicher SQL-Code ausgefuehrt
werden — sie landen als sicherer Datenwert in der Abfrage.

Warum das gegen SQLi hilft

Trennung von Code und Daten: Eingaben koennen die SQL-Syntax nicht mehr verändern.
Schutz gegen die meisten Angriffsvarianten: Union-, Error- und Blind-SQLi werden dadurch
weitgehend unwirksam, weil die Datenbank die Struktur bereits fixiert hat.
Performance-Bonus: Bei wiederholten Abfragen wird der vorbereitete Plan wiederverwendet —
das ist ein netter Nebeneffekt.

Beispiel JavaScript Die Werte in […] sind rein Daten — kein Code.

// Platzhalter $1, $2 — Parameter separat uebergeben
const sql = 'UPDATE Production.ProductInventory SET Quantity = $1 WHERE
ProductID = $2';
await client.query(sql, [quantity, productId]);

Stored Procedure

Kurzfassung zuerst: Stored Procedures (SPs) verlagern SQL-Logik in die Datenbank. Richtig verwendet
trennen sie Code (die prozedurale Logik in der DB) von Daten (die Parameter), reduzieren
Angriffsflächen und erleichtern Zugriffssteuerung. Keine Zauberformel — sie helfen, sind aber kein
Freifahrtschein.

Last update: 2025/12/08 10:37 modul:m183:learningunits:lu11:03 https://wiki.bzz.ch/modul/m183/learningunits/lu11/03

https://wiki.bzz.ch/ Printed on 2025/12/15 21:29

Wie stored procedures grundsätzlich schützen

Die SQL-Struktur liegt in der Datenbank und nicht in applikationsseitig zusammengesetzten
Strings.
Parameter werden (wenn sie als Parameter benutzt werden) von der DB engine als Daten
behandelt — nicht als Teil des SQL-Codes.
DB-Accounts können nur EXECUTE-Rechte auf die SP erhalten, nicht direkte
SELECT/UPDATE/DELETE-Rechte auf Tabellen. Damit wird least privilege einfacher durchsetzbar.
SPs erlauben zentralisierte Validierung/Logging und vereinfachen Auditing.

Kurz: SP machen es einem Angreifer schwerer, per manipulierten Input die Abfrage-Struktur zu
verändern — sofern diese nicht durch unsauberen Code zunichte gemacht wurde.

 Volkan Demir

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m183/learningunits/lu11/03

Last update: 2025/12/08 10:37

https://wiki.bzz.ch/_detail/modul/m183/learningunits/lu10/lu10c_2.png?id=modul%3Am183%3Alearningunits%3Alu11%3A03
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m183/learningunits/lu11/03

2025/12/15 21:29 5/5 LU11c - SQLi Gegenmassnahmen

BZZ - Modulwiki - https://wiki.bzz.ch/

	LU11c - SQLi Gegenmassnahmen
	Escaping
	Parametrisierte Werteübergabe
	Input Validation
	Prepared Statement
	Stored Procedure

