
2026/02/03 16:01 1/4 LU15a – Was ist ein Backend-Server?

BZZ - Modulwiki - https://wiki.bzz.ch/

LU15a – Was ist ein Backend-Server?

Lernziele

Sie können erklären, was ein Backend-Server ist.
Sie können den Backend-Server in der 3-Schichten-Architektur einordnen.
Sie kennen die Begriffe Node.js, npm, Express, nodemon, Port, API und können sie
beschreiben.
Sie verstehen, warum eine Webapplikation besser auf einem 3-Tier-Modell basiert als auf
einem direkten Datenbankzugriff.

3-Tier-Webarchitektur (3-Schichten-Architektur)

Die 3-Tier-Architektur teilt eine Webapplikation in drei Schichten:

Presentation Layer (Frontend) – Oberfläche im Browser oder in einer App1.
Application Layer (Backend) – Logik, Regeln, Validierung2.
Data Layer (Datenbank) – Speichern und Verwalten der Daten3.

Jede Schicht hat eine klar definierte Aufgabe und spricht nur mit der direkt angrenzenden Schicht.
Vorteile von einer 3-Tier-Architektur:

bessere Sicherheit
bessere Wartbarkeit
mehr Flexibilität, wenn die Anwendung wächst

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu15/theorie/client_server.png


Last
update:
2025/12/07
21:37

modul:m290_guko:learningunits:lu15:theorie:a_backend_server https://wiki.bzz.ch/modul/m290_guko/learningunits/lu15/theorie/a_backend_server

https://wiki.bzz.ch/ Printed on 2026/02/03 16:01

Wichtige Begriffe im Node.js-Ökosystem

Begriff Kurz erklärt Wofür brauchen wir es im
Modul? Download / Link

Node.js

JavaScript-Laufzeitumgebung,
mit der Sie JavaScript
ausserhalb des Browsers
ausführen (z.B. auf dem
Server).

Läuft als Basis für Ihren
Backend-Server; ohne Node
kann Ihr Express-Server nicht
starten.

Node.js Download (LTS)

npm
Node Package Manager:
Standard-Paketmanager für
Node.js. Installiert zusätzliche
Bibliotheken (Packages).

Sie installieren damit z.B.
Express und nodemon und
verwalten Abhängigkeiten im
Projekt.

-

Express
Minimalistisches Web-
Framework für Node.js, um
HTTP-Server und APIs zu
bauen.

Sie programmieren damit Ihre
REST-API (Routen,
Request/Response, Status-
Codes).

Express-Dokumentation
/ GitHub

nodemon
Tool, das den Node-Server
automatisch neu startet,
wenn sich Dateien ändern.

Komfort im Unterricht: Kein
manuelles node index.js
nach jeder Code-Änderung
nötig.

nodemon auf GitHub

Port
„Türnummer“ auf einem
Computer, über die ein Dienst
erreichbar ist (z.B. 3000,
8080, 80).

Ihr Server lauscht
standardmässig auf Port
3000 → Browser:
http://localhost:3000/.

–

API
Application
Programming Interface –
Schnittstelle, über die
Software miteinander spricht.

Ihr Express-Server stellt eine
HTTP-API bereit: z.B. GET
/api/books liefert Daten
zurück.

–

Warum überhaupt ein Backend-Server?

Bis jetzt haben Sie im Modul M290 vor allem mit der Datenbank gearbeitet:

Sie haben in WebStorm mit dem Datenbank-Plugin gearbeitet.
Sie haben SQL-Befehle (inkl. CRUD) direkt an die Datenbank MySQL geschickt.
Das war ideal, um SQL zu üben und zu verstehen, wie Tabellen, JOINs und Aggregatfunktionen
funktionieren.

Für eine richtige Webapplikation, die viele Benutzerinnen und Benutzer über das Internet nutzen,
ist dieser direkte Zugriff jedoch nicht sinnvoll und auch nicht sicher.

Was wäre, wenn der Browser direkt auf die Datenbank zugreifen würde?

Stellen Sie sich vor:

https://nodejs.org/
https://expressjs.com/
https://github.com/expressjs/express
https://github.com/remy/nodemon


2026/02/03 16:01 3/4 LU15a – Was ist ein Backend-Server?

BZZ - Modulwiki - https://wiki.bzz.ch/

Ihr Browser würde direkt eine Verbindung zur Datenbank MySQL aufbauen.
Jede Benutzerin / jeder Benutzer hätte direkten Zugriff auf Tabellen und könnte eigene SQL-
Befehle schicken.

Das führt zu mehreren Problemen:

Sicherheitsrisiko: Alle, die die Verbindung kennen, könnten eigene SQL-Befehle ausführen –
auch schädliche (z.B. Daten löschen).
Keine Kontrolle über die Logik: Es gäbe keine zentrale Stelle, die prüft, ob eine Aktion
erlaubt ist (z.B. darf ein:e Lernende:r wirklich Noten ändern?).
Schwierige Wartung: Wenn sich die Struktur der Datenbank ändert, müssten alle Frontends
(Webseiten, Apps, …) angepasst werden.
Technische Abhängigkeit: Jedes Frontend müsste wissen, wie genau die Datenbank
aufgebaut ist (Tabellennamen, Spaltennamen, Datentypen, …).

Die Lösung: eine zusätzliche Logik-Schicht

Statt den Browser direkt mit der Datenbank sprechen zu lassen, schalten wir eine Zwischenschicht
dazwischen: den Backend-Server.

3-Schichten-Architektur in unserem Modul

Client (Browser / Postman) ⇄ Backend-Server (Node.js/Express) ⇄ Datenbank
(MySQL)

Der Client (z.B. Browser oder Postman) sendet HTTP-Anfragen (z.B. GET /api/books).
Der Backend-Server:

nimmt die Anfrage entgegen,1.
prüft die Daten,2.
entscheidet, was erlaubt ist,3.
führt die passenden SQL-Befehle auf der Datenbank aus,4.
formatiert das Ergebnis (z.B. als JSON) und sendet es zurück.5.

Die Datenbank kennt nur den Server und führt dessen SQL-Kommandos aus – aber kein Client
greift direkt darauf zu.

Vorteile des Backend-Servers im Detail

1. Sicherheit

Die Datenbank ist nicht direkt aus dem Internet erreichbar.
Nur der Backend-Server hat Zugang zur Datenbank (z.B. über einen eigenen AppUser mit klar
definierten Rechten).
Der Server entscheidet:

welche SQL-Befehle erlaubt sind,1.
welche Daten angezeigt oder verändert werden dürfen.2.

2. Businesslogik & Validierung



Last
update:
2025/12/07
21:37

modul:m290_guko:learningunits:lu15:theorie:a_backend_server https://wiki.bzz.ch/modul/m290_guko/learningunits/lu15/theorie/a_backend_server

https://wiki.bzz.ch/ Printed on 2026/02/03 16:01

Fachliche Regeln werden im Backend umgesetzt, z.B.:
Note muss zwischen 1.0 und 6.0 liegen,1.
Geburtsdatum darf nicht in der Zukunft liegen,2.
Eine Bewertung darf nur 1–5 Sterne haben.3.

Der Browser darf nicht über eigene SQL-Befehle mit der Datenbank kommunizieren, sondern
ruft nur definierte API-Endpunkte auf

(z.B. POST /api/trips oder GET /api/books).

So ist klar geregelt, was das System darf und was nicht.

3. Einheitliche Schnittstelle (API)

Der Backend-Server stellt eine API bereit (z.B. /api/trips, /api/songs).
Diese API kann von verschiedenen Clients genutzt werden:

einer Webseite,1.
einer Mobile-App,2.
Tools wie Postman.3.

Die Datenbank-Struktur kann sich im Hintergrund ändern – die API kann stabil bleiben.

4. Bessere Wartbarkeit & Erweiterbarkeit

Änderungen an der Datenbank (z.B. neue Tabelle, anderes Feld) werden zuerst im Backend
angepasst.
Frontends müssen nur die API kennen, nicht die Details der Datenbank.
Neue Funktionen (z.B. zusätzlicher Filter, neue Berechnung) können im Backend ergänzt
werden,

ohne dass direkt SQL im Frontend geändert werden muss.

In dieser Phase des Moduls gehen wir den nächsten Schritt:

Wir schreiben keine SQL-Befehle, wie SELECT/UPDATE/DELETE/CREATE mehr direkt in
WebStorm an die Datenbank,
sondern wir bauen einen Backend-Server mit Node.js/Express, der für uns mit der
Datenbank spricht. (Andere SQL-Befehle, wie das Erstellen von Tabellen und Datenbanken
werden wir weiterhin direkt mit Webstorm/Datenbank-Plugin machen).
Im Unterricht verwenden wir dazu zunächst den Browser und Postman als Client, später
könnten auch echte Frontends (Web oder Mobile) diese API nutzen.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu15/theorie/a_backend_server

Last update: 2025/12/07 21:37

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu15/theorie/a_backend_server

	LU15a – Was ist ein Backend-Server?
	Lernziele
	3-Tier-Webarchitektur (3-Schichten-Architektur)
	Wichtige Begriffe im Node.js-Ökosystem
	Warum überhaupt ein Backend-Server?
	Was wäre, wenn der Browser direkt auf die Datenbank zugreifen würde?
	Die Lösung: eine zusätzliche Logik-Schicht
	Vorteile des Backend-Servers im Detail



