2026/02/03 16:01 1/4 LU15a - Was ist ein Backend-Server?

LU15a - Was ist ein Backend-Server?

Lernziele

e Sie kdnnen erklaren, was ein Backend-Server ist.

e Sie konnen den Backend-Server in der 3-Schichten-Architektur einordnen.

e Sie kennen die Begriffe Node.js, npm, Express, nodemon, Port, APl und kénnen sie
beschreiben.

e Sie verstehen, warum eine Webapplikation besser auf einem 3-Tier-Modell basiert als auf
einem direkten Datenbankzugriff.

3-Tier-Webarchitektur (3-Schichten-Architektur)

Die 3-Tier-Architektur teilt eine Webapplikation in drei Schichten:

1. Presentation Layer (Frontend) - Oberflache im Browser oder in einer App
2. Application Layer (Backend) - Logik, Regeln, Validierung
3. Data Layer (Datenbank) - Speichern und Verwalten der Daten

.

T ANFRAGE FUR DATEN

Crry— rmaey

(HTTP)
—
ANTWORT
L SEITE / DATEN
(HTTR)
.4"
-

BEARBEITEN

—

—
DATEN
ANTWORT

(@

(FUNLIILIHOYY ¥3IL 33HHL)
HNLYNILIHOHY-NILHIIHIS 1340

Browser Server Logik Datenbank
‘ . « HTML « PHP + SQL
)
. (S5 « Node.js « MQL
» JavaScript (JavaScript)
+ Java

Jede Schicht hat eine klar definierte Aufgabe und spricht nur mit der direkt angrenzenden Schicht.
Vorteile von einer 3-Tier-Architektur:

¢ bessere Sicherheit
¢ bessere Wartbarkeit
¢ mehr Flexibilitat, wenn die Anwendung wachst

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu15/theorie/client_server.png

Last
update:
2025/12/07
21:37

modul:m290_guko:learningunits:lul5:theorie:a_backend_server https://wiki.bzz.ch/modul/m290_guko/learningunits/lul5/theorie/a_backend_server

Wichtige Begriffe im Node.js-Okosystem

Begriff |Kurz erklart BUEHI T D @ Download / Link
Modul?
Javascnpelalize umgebung, Lauft als Basis flr Ihren
e el S e Backend-Server; ohne Node
Node.js |ausserhalb des Browsers ' . Node.js Download (LTS)
’ kann lhr Express-Server nicht
ausfuhren (z.B. auf dem
starten.
Server).
Node Package Manager: |Sie installieren damit z.B.
nbm Standard-Paketmanager fir |Express und nodemon und
P Node.js. Installiert zusatzliche |verwalten Abhangigkeiten im
Bibliotheken (Packages). Projekt.
Minimalistisches Web- Sie programmieren damit lhre
EXDress Framework flr Node.js, um REST-API (Routen, Express-Dokumentation
P HTTP-Server und APIs zu Request/Response, Status- / GitHub
bauen. Codes).
Tool, das den Node-Server anr:rjoerltlelgnn%r(\jt:rrilcnr:jté)lfel_ns
nodemon|automatisch neu startet, . ») nodemon auf GitHub
. o nach jeder Code-Anderung
wenn sich Dateien andern. e
notig.
Lturnummer* auf einem Ihr Server lauscht
Port Computer, Uber die ein Dienst |standardmassig auf Port B
erreichbar ist (z.B. 3000, 3000 - Browser:
8080, 80). http://localhost:3000/.
Application Ihr Express-Server stellt eine
API Programming Interface - |HTTP-API bereit: z.B. GET B
Schnittstelle, Uber die /api/books liefert Daten
Software miteinander spricht. |zurtck.

Warum uberhaupt ein Backend-Server?

Bis jetzt haben Sie im Modul M290 vor allem mit der Datenbank gearbeitet:

e Sie haben in WebStorm mit dem Datenbank-Plugin gearbeitet.

e Sie haben SQL-Befehle (inkl. CRUD) direkt an die Datenbank MySQL geschickt.

e Das war ideal, um SQL zu Uben und zu verstehen, wie Tabellen, JOINs und Aggregatfunktionen
funktionieren.

Fur eine richtige Webapplikation, die viele Benutzerinnen und Benutzer Uber das Internet nutzen,
ist dieser direkte Zugriff jedoch nicht sinnvoll und auch nicht sicher.

Was ware, wenn der Browser direkt auf die Datenbank zugreifen wiirde?

Stellen Sie sich vor:

https://wiki.bzz.ch/

Printed on 2026/02/03 16:01

https://nodejs.org/
https://expressjs.com/
https://github.com/expressjs/express
https://github.com/remy/nodemon

2026/02/03 16:01 3/4 LU15a - Was ist ein Backend-Server?

e |hr Browser wirde direkt eine Verbindung zur Datenbank MySQL aufbauen.
 Jede Benutzerin / jeder Benutzer hatte direkten Zugriff auf Tabellen und kénnte eigene SQL-

Befehle schicken.
Das fihrt zu mehreren Problemen:

« Sicherheitsrisiko: Alle, die die Verbindung kennen, kdnnten eigene SQL-Befehle ausfihren -
auch schadliche (z.B. Daten l6schen).

e Keine Kontrolle uiber die Logik: Es gabe keine zentrale Stelle, die prift, ob eine Aktion
erlaubt ist (z.B. darf ein:e Lernende:r wirklich Noten andern?).

e Schwierige Wartung: Wenn sich die Struktur der Datenbank andert, mussten alle Frontends

(Webseiten, Apps, ...) angepasst werden.
* Technische Abhangigkeit: Jedes Frontend musste wissen, wie genau die Datenbank
aufgebaut ist (Tabellennamen, Spaltennamen, Datentypen, ...).

Die Losung: eine zusatzliche Logik-Schicht

Statt den Browser direkt mit der Datenbank sprechen zu lassen, schalten wir eine Zwischenschicht
dazwischen: den Backend-Server.

3-Schichten-Architektur in unserem Modul

Client (Browser / Postman) 2 Backend-Server (Node.js/Express) 2 Datenbank
(MySQL)

e Der Client (z.B. Browser oder Postman) sendet HTTP-Anfragen (z.B. GET /api/books).
e Der Backend-Server:
1. nimmt die Anfrage entgegen,
pruft die Daten,
entscheidet, was erlaubt ist,
fuhrt die passenden SQL-Befehle auf der Datenbank aus,
. formatiert das Ergebnis (z.B. als JSON) und sendet es zurtck.
e Die Datenbank kennt nur den Server und fuhrt dessen SQL-Kommandos aus - aber kein Client
greift direkt darauf zu.

NUFNIFEN

Vorteile des Backend-Servers im Detail

1. Sicherheit

e Die Datenbank ist nicht direkt aus dem Internet erreichbar.
e Nur der Backend-Server hat Zugang zur Datenbank (z.B. Uber einen eigenen AppUser mit klar
definierten Rechten).
e Der Server entscheidet:
1. welche SQL-Befehle erlaubt sind,
2. welche Daten angezeigt oder verandert werden durfen.

2. Businesslogik & Validierung

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

ggggﬁ%/m modul:m290_guko:learningunits:lul5:theorie:a_backend_server https://wiki.bzz.ch/modul/m290_guko/learningunits/lul5/theorie/a_backend_server

21:37

e Fachliche Regeln werden im Backend umgesetzt, z.B.:
1. Note muss zwischen 1.0 und 6.0 liegen,
2. Geburtsdatum darf nicht in der Zukunft liegen,
3. Eine Bewertung darf nur 1-5 Sterne haben.
e Der Browser darf nicht Uber eigene SQL-Befehle mit der Datenbank kommunizieren, sondern
ruft nur definierte API-Endpunkte auf

(z.B. POST /api/trips oder GET /api/books).
e So ist klar geregelt, was das System darf und was nicht.
3. Einheitliche Schnittstelle (API)

e Der Backend-Server stellt eine API bereit (z.B. /api/trips, /api/songs).
¢ Diese API kann von verschiedenen Clients genutzt werden:
1. einer Webseite,
2. einer Mobile-App,
3. Tools wie Postman.
¢ Die Datenbank-Struktur kann sich im Hintergrund andern - die API kann stabil bleiben.

4. Bessere Wartbarkeit & Erweiterbarkeit

« Anderungen an der Datenbank (z.B. neue Tabelle, anderes Feld) werden zuerst im Backend
angepasst.

e Frontends mussen nur die APl kennen, nicht die Details der Datenbank.

e Neue Funktionen (z.B. zusatzlicher Filter, neue Berechnung) kdnnen im Backend erganzt
werden,

ohne dass direkt SQL im Frontend geandert werden muss.
In dieser Phase des Moduls gehen wir den nachsten Schritt:

e Wir schreiben keine SQL-Befehle, wie SELECT/UPDATE/DELETE/CREATE mehr direkt in
WebStorm an die Datenbank,

e sondern wir bauen einen Backend-Server mit Node.js/Express, der fur uns mit der
Datenbank spricht. (Andere SQL-Befehle, wie das Erstellen von Tabellen und Datenbanken
werden wir weiterhin direkt mit Webstorm/Datenbank-Plugin machen).

¢ Im Unterricht verwenden wir dazu zunachst den Browser und Postman als Client, spater
kénnten auch echte Frontends (Web oder Mobile) diese API nutzen.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

Last update: 2025/12/07 21:37

https://wiki.bzz.ch/ Printed on 2026/02/03 16:01

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu15/theorie/a_backend_server

	LU15a – Was ist ein Backend-Server?
	Lernziele
	3-Tier-Webarchitektur (3-Schichten-Architektur)
	Wichtige Begriffe im Node.js-Ökosystem
	Warum überhaupt ein Backend-Server?
	Was wäre, wenn der Browser direkt auf die Datenbank zugreifen würde?
	Die Lösung: eine zusätzliche Logik-Schicht
	Vorteile des Backend-Servers im Detail

