2026/02/03 14:28 1/5 LU15c - Erster Express-Server mit Node.js

LU15c - Erster Express-Server mit Node.js

Learning Objectives

¢ Sie kdnnen einen einfachen Express-Server programmieren.

e Sie konnen den Server Uber das Terminal starten.

e Sie verstehen den Request-Response-Zyklus (app.get, res.send).

e Sie kénnen erklaren, warum dies kein klassisches Website-Frontend, sondern ein Backend-
Server / API ist.

¢ Sie kennen nodemon und einfache npm scripts fur einen komfortablen Entwicklungsablauf.

Unser erster Express-Server

Offnen Sie die Datei index. js und fiigen Sie folgenden Code ein:

import express from 'express'

app express
port

// Route fiir GET-Anfragen auf "/"
app. A req, res
res.send('Hello World'

// Server starten und auf Port 3000 auf Anfragen warten
app.listen(port
console.log(Example app listening on port ${port}’

Was passiert in diesem Code?

e import express from 'express'; - Ladt das Express-Framework aus node _modules.
e const app = express(); - Erstellt eine neue Express-Anwendung - das ist Ihr
Serverobjekt.
e const port = 3000; - Definiert den Port, auf dem der Server lauscht.
e app.get('/', (req, res) = { .. }); = Definiert eine Route:
o Wenn eine GET-Anfrage an / kommt,
o fuhrt Express die Callback-Funktion aus.
o req = Request-Objekt (Infos Uber Anfrage),

res = Response-Objekt (Antwort, die Sie zurlckschicken).

e res.send('Hello World'); - sendet den Text Hello World als Antwort zuriick an den

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2025/12/08
15:30

modul:m290_guko:learningunits:lul5:theorie:c_server_konfigurieren https://wiki.bzz.ch/modul/m290_guko/learningunits/lul5/theorie/c_server_konfigurieren

Browser oder Postman.
e app.listen(port, () = { .. }); — Startet den Server und gibt im Terminal eine kurze
Meldung aus.

Request (HTTP)

localhost:3000 l

Server Logik

-
Response (HTTP)

Browser / « Node.js & express
Postman

Das Schema zeigt, wie ein Zusammenspiel aus Anfrage (Request) und Antwort (Response) zwischen
Client und Server funktioniert.

Server starten und im Browser testen

=

. Offnen Sie in WebStorm das Terminal (Projektordner).
. Starten Sie den Server mit:

N

node index.js

. Im Terminal sollte erscheinen: Example app listening on port 3000

. Offnen Sie Ihren Browser und geben Sie ein: http://localhost:3000/

. Sie sollten nur das Wort Hello World im Browser sehen.

. Server stoppen: Im Terminal Strg + C (Windows/Linux) oder ctrl + C (macQS) dricken.

H W N

Wichtig: Wir haben keinen , klassischen” Webauftritt

https://wiki.bzz.ch/ Printed on 2026/02/03 14:28

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu15/theorie/client_server_nodejs_http_req_response.png

2026/02/03 14:28 3/5 LU15c - Erster Express-Server mit Node.js

programmiert

Zentrale Idee

Sie haben in dieser Learning Unit kein HTML, kein CSS und kein JavaScript
fur den Browser geschrieben. Sie haben JavaScript fur den Server
geschrieben.

e Der Browser spielt hier nur die Rolle eines Clients, der eine Anfrage an
Ihren Server sendet.

e Der Express-Server beantwortet diese Anfrage mit einer Antwort
(Response).

e Der Browser zeigt einfach an, was im Response-Body steht (in unserem
Fall der Text Hello World.).

Spater werden Sie:

e statt einfachem Text JSON-Daten zurickgeben,
e mehrere Routen (z.B. /api/trips, /api/books) definieren,
e und diese mit Ihrer MySQL-Datenbank verbinden.

Entwickler-Komfort: npm-Scripts & nodemon

Wenn Sie nach jeder Codeanderung den Server mit node index. js neu starten mussen, ist das
muhsam. Daflr gibt es zwei Hilfsmittel:

e npm scripts in package.json
¢ nodemon fir automatischen Neustart

1. nodemon installieren

Installieren Sie nodemon als Entwicklungs-Tool:

npm install --save-dev nodemon

Dadurch erganzt npm Ihre package. json um einen Eintrag unter devDependencies flir nodemon.
Was bedeutet devDependencies?
In package. json gibt es zwei wichtige Bereiche fur Pakete:

e dependencies - Pakete, die Ihre Anwendung zum Ausfiithren braucht (z.B. express). Ohne
diese Pakete kann der Server in Produktion nicht laufen.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2025/12/08
15:30

modul:m290_guko:learningunits:lul5:theorie:c_server_konfigurieren https://wiki.bzz.ch/modul/m290_guko/learningunits/lul5/theorie/c_server_konfigurieren

e devDependencies - Pakete, die Sie nur wahrend der Entwicklung brauchen (z.B. Test-
Frameworks, Build-Tools - und nodemon).

nodemon ist ein typisches Entwicklungs-Tool: Es hilft Ihnen beim Programmieren (automatischer
Neustart bei Anderungen), wird aber auf einem spateren Produktionsserver nicht benétigt. Darum
speichern wir es mit —save-dev in den devDependencies.

B index.js {} package.json

sion
cription™:
"type

"main

die nur zum

aucht werde

2. Scripts in "package.json' erganzen

Offnen Sie package. json und erganzen Sie den Abschnitt scripts wie folgt (Beispiel, wie im
Screenshot oben):

"scripts": {
"start": "node index.js",
"dev": "nodemon index.js"

https://wiki.bzz.ch/ Printed on 2026/02/03 14:28

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu15/theorie/screenshot_2025-12-08_at_08.45.36.png

2026/02/03 14:28 5/5 LU15c - Erster Express-Server mit Node.js

Damit definieren Sie zwei Startvarianten:

e npm start
1. Startet den Server mit node index.js.
2. Der Prozess lauft ,ganz normal“ ohne automatischen Neustart.
3. Das entspricht eher einem Produktivbetrieb: Der Server |auft stabil, Anderungen am
Code erfordern ein manuelles Neustarten.

e npm run dev
1. Startet den Server mit nodemon index.js.
2. nodemon beobachtet Ihre Dateien und startet den Server automatisch neu, wenn Sie
etwas andern und speichern.
3. Das ist ideal fur die Entwicklung im Unterricht, weil Sie sofort die Wirkung Ihrer
Anderungen sehen.

Wenn Sie nun in index. js (oder lhrer Server-Datei) etwas andern und speichern, startet nodemon
den Server bei npm run dev automatisch neu. Sie mussen node index. js nicht jedes Mal von
Hand ausfuhren.

node_modules & IDE-Hinweise

e Der Ordner node_modules/ kann sehr gross werden. Er wird von npm automatisch verwaltet
und muss nicht manuell bearbeitet werden.
e FUr Abgaben (z.B. in Moodle) reicht meist:
o Quellcode-Dateien (z.B. index. js)
o package. json (und optional package-lock. json)
¢ In WebStorm kénnen Sie bei Bedarf die Inlay-Hints (kleine Typ-Hinweise) deaktivieren, wenn
diese Sie storen (Settings - Editor - Inlay Hints).

In den nachsten Learning Units werden Sie:

e weitere Routen in lhrem Express-Server anlegen,
e Daten nicht nur zurickgeben, sondern auch annehmen (POST, PUT, DELETE),
« |hre personlichen Use Cases (z.B. Reisedatenbank, Lieblingsfilme, Geburtstage) mit einer

echten MySQL-Datenbank verbinden und alle CRUD-Operationen uiber den Backend-Server
ausfuhren.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: e A
https://wiki.bzz.ch/modul/m290_guko/learningunits/lul5/theorie/c_server_konfigurieren g

Last update: 2025/12/08 15:30

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu15/theorie/c_server_konfigurieren

	LU15c – Erster Express-Server mit Node.js
	Learning Objectives
	Unser erster Express-Server
	Server starten und im Browser testen
	Wichtig: Wir haben keinen „klassischen“ Webauftritt programmiert
	Entwickler-Komfort: npm-Scripts & nodemon
	1. nodemon installieren
	2. Scripts in ''package.json'' ergänzen

	node_modules & IDE-Hinweise

