
2026/02/03 14:28 1/5 LU15c – Erster Express-Server mit Node.js

BZZ - Modulwiki - https://wiki.bzz.ch/

LU15c – Erster Express-Server mit Node.js

Learning Objectives

Sie können einen einfachen Express-Server programmieren.
Sie können den Server über das Terminal starten.
Sie verstehen den Request-Response-Zyklus (app.get, res.send).
Sie können erklären, warum dies kein klassisches Website-Frontend, sondern ein Backend-
Server / API ist.
Sie kennen nodemon und einfache npm scripts für einen komfortablen Entwicklungsablauf.

Unser erster Express-Server

Öffnen Sie die Datei index.js und fügen Sie folgenden Code ein:

import express from 'express';

const app = express();
const port = 3000;

// Route für GET-Anfragen auf "/"
app.get('/', (req, res) => {
 res.send('Hello World');
});

// Server starten und auf Port 3000 auf Anfragen warten
app.listen(port, () => {
 console.log(`Example app listening on port ${port}`);
});

Was passiert in diesem Code?

import express from 'express'; → Lädt das Express-Framework aus node_modules.
const app = express(); → Erstellt eine neue Express-Anwendung – das ist Ihr
Serverobjekt.
const port = 3000; → Definiert den Port, auf dem der Server lauscht.
app.get('/', (req, res) ⇒ { … }); → Definiert eine Route:

Wenn eine GET-Anfrage an / kommt,
führt Express die Callback-Funktion aus.
req = Request-Objekt (Infos über Anfrage),

res = Response-Objekt (Antwort, die Sie zurückschicken).

res.send('Hello World'); → sendet den Text Hello World als Antwort zurück an den

Last
update:
2025/12/08
15:30

modul:m290_guko:learningunits:lu15:theorie:c_server_konfigurieren https://wiki.bzz.ch/modul/m290_guko/learningunits/lu15/theorie/c_server_konfigurieren

https://wiki.bzz.ch/ Printed on 2026/02/03 14:28

Browser oder Postman.
app.listen(port, () ⇒ { … }); → Startet den Server und gibt im Terminal eine kurze
Meldung aus.

Das Schema zeigt, wie ein Zusammenspiel aus Anfrage (Request) und Antwort (Response) zwischen
Client und Server funktioniert.

Server starten und im Browser testen

Öffnen Sie in WebStorm das Terminal (Projektordner).1.
Starten Sie den Server mit:2.

node index.js

Im Terminal sollte erscheinen: Example app listening on port 30001.
Öffnen Sie Ihren Browser und geben Sie ein: http://localhost:3000/2.
Sie sollten nur das Wort Hello World im Browser sehen.3.
Server stoppen: Im Terminal Strg + C (Windows/Linux) oder ctrl + C (macOS) drücken.4.

Wichtig: Wir haben keinen „klassischen“ Webauftritt

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu15/theorie/client_server_nodejs_http_req_response.png

2026/02/03 14:28 3/5 LU15c – Erster Express-Server mit Node.js

BZZ - Modulwiki - https://wiki.bzz.ch/

programmiert

Zentrale Idee

Sie haben in dieser Learning Unit kein HTML, kein CSS und kein JavaScript
für den Browser geschrieben. Sie haben JavaScript für den Server
geschrieben.

Der Browser spielt hier nur die Rolle eines Clients, der eine Anfrage an
Ihren Server sendet.
Der Express-Server beantwortet diese Anfrage mit einer Antwort
(Response).
Der Browser zeigt einfach an, was im Response-Body steht (in unserem
Fall der Text Hello World.).

Später werden Sie:

statt einfachem Text JSON-Daten zurückgeben,
mehrere Routen (z.B. /api/trips, /api/books) definieren,
und diese mit Ihrer MySQL-Datenbank verbinden.

Entwickler-Komfort: npm-Scripts & nodemon

Wenn Sie nach jeder Codeänderung den Server mit node index.js neu starten müssen, ist das
mühsam. Dafür gibt es zwei Hilfsmittel:

npm scripts in package.json
nodemon für automatischen Neustart

1. nodemon installieren

Installieren Sie nodemon als Entwicklungs-Tool:

npm install --save-dev nodemon

Dadurch ergänzt npm Ihre package.json um einen Eintrag unter devDependencies für nodemon.

Was bedeutet devDependencies?

In package.json gibt es zwei wichtige Bereiche für Pakete:

dependencies → Pakete, die Ihre Anwendung zum Ausführen braucht (z.B. express). Ohne
diese Pakete kann der Server in Produktion nicht laufen.

Last
update:
2025/12/08
15:30

modul:m290_guko:learningunits:lu15:theorie:c_server_konfigurieren https://wiki.bzz.ch/modul/m290_guko/learningunits/lu15/theorie/c_server_konfigurieren

https://wiki.bzz.ch/ Printed on 2026/02/03 14:28

devDependencies → Pakete, die Sie nur während der Entwicklung brauchen (z.B. Test-
Frameworks, Build-Tools – und nodemon).

nodemon ist ein typisches Entwicklungs-Tool: Es hilft Ihnen beim Programmieren (automatischer
Neustart bei Änderungen), wird aber auf einem späteren Produktionsserver nicht benötigt. Darum
speichern wir es mit –save-dev in den devDependencies.

2. Scripts in ''package.json'' ergänzen

Öffnen Sie package.json und ergänzen Sie den Abschnitt scripts wie folgt (Beispiel, wie im
Screenshot oben):

"scripts": {
 "start": "node index.js",
 "dev": "nodemon index.js"
}

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu15/theorie/screenshot_2025-12-08_at_08.45.36.png

2026/02/03 14:28 5/5 LU15c – Erster Express-Server mit Node.js

BZZ - Modulwiki - https://wiki.bzz.ch/

Damit definieren Sie zwei Startvarianten:

npm start
Startet den Server mit node index.js.1.
Der Prozess läuft „ganz normal“ ohne automatischen Neustart.2.
Das entspricht eher einem Produktivbetrieb: Der Server läuft stabil, Änderungen am3.
Code erfordern ein manuelles Neustarten.

npm run dev
Startet den Server mit nodemon index.js.1.
nodemon beobachtet Ihre Dateien und startet den Server automatisch neu, wenn Sie2.
etwas ändern und speichern.
Das ist ideal für die Entwicklung im Unterricht, weil Sie sofort die Wirkung Ihrer3.
Änderungen sehen.

Wenn Sie nun in index.js (oder Ihrer Server-Datei) etwas ändern und speichern, startet nodemon
den Server bei npm run dev automatisch neu. Sie müssen node index.js nicht jedes Mal von
Hand ausführen.

node_modules & IDE-Hinweise

Der Ordner node_modules/ kann sehr gross werden. Er wird von npm automatisch verwaltet
und muss nicht manuell bearbeitet werden.
Für Abgaben (z.B. in Moodle) reicht meist:

Quellcode-Dateien (z.B. index.js)
package.json (und optional package-lock.json)

In WebStorm können Sie bei Bedarf die Inlay-Hints (kleine Typ-Hinweise) deaktivieren, wenn
diese Sie stören (Settings → Editor → Inlay Hints).

In den nächsten Learning Units werden Sie:

weitere Routen in Ihrem Express-Server anlegen,
Daten nicht nur zurückgeben, sondern auch annehmen (POST, PUT, DELETE),
Ihre persönlichen Use Cases (z.B. Reisedatenbank, Lieblingsfilme, Geburtstage) mit einer
echten MySQL-Datenbank verbinden und alle CRUD-Operationen über den Backend-Server
ausführen.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu15/theorie/c_server_konfigurieren

Last update: 2025/12/08 15:30

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu15/theorie/c_server_konfigurieren

	LU15c – Erster Express-Server mit Node.js
	Learning Objectives
	Unser erster Express-Server
	Server starten und im Browser testen
	Wichtig: Wir haben keinen „klassischen“ Webauftritt programmiert
	Entwickler-Komfort: npm-Scripts & nodemon
	1. nodemon installieren
	2. Scripts in ''package.json'' ergänzen

	node_modules & IDE-Hinweise

