
2026/02/03 21:04 1/13 LU16 – HTTP, CRUD & Postman

BZZ - Modulwiki - https://wiki.bzz.ch/

LU16 – HTTP, CRUD & Postman

Lernziele

Sie können erklären, wie eine HTTP-Anfrage und eine HTTP-Antwort funktionieren. 1)

Sie können die vier wichtigsten HTTP-Methoden GET, POST, PUT, DELETE den CRUD-
Operationen zuordnen.
Sie verstehen, was eine API und was eine Route in Express ist.
Sie können mit Postman einfache Requests an Ihren Express-Server schicken.
Sie können erste CRUD-Routen für posts mit einer einfachen Liste erstellen (ohne
Datenbank).

Von SQL-CRUD zu Web-CRUD

Bisher im Modul M290:

Sie haben in MySQL Tabellen erstellt, Daten importiert und Abfragen geschrieben.
Sie kennen CRUD:

Create → INSERT
Read → SELECT
Update → UPDATE
Delete → DELETE

Last
update:
2025/12/14
23:05

modul:m290_guko:learningunits:lu16:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/a_intro?rev=1765749930

https://wiki.bzz.ch/ Printed on 2026/02/03 21:04

Jetzt übertragen wir diese Idee auf das Web: Statt direkt SQL zu tippen, schicken wir HTTP-Anfragen
an einen Backend-Server 2) – bei uns: Express (Node.js). Der Server führt für uns die passenden
CRUD-Operationen aus und sendet eine Antwort zurück.

Wir bauen zuerst eine API für Social-Media-Posts, noch ohne Datenbank – nur mit Daten in einem
Javascript-Objekt. So können wir HTTP, Routen und Postman kennenlernen, bevor wir in in der
nächsten Unterrichtseinheit MySQL an Express anbinden.

HTTP-Methoden – wie Bestellungen in einem Restaurant

Stellen Sie sich das so vor:

Client (Browser oder Postman) = Gast im Restaurant 3)

Server (Express/Node.js) = Küche 4)

HTTP-Anfrage = Bestellung, die der Kellner/die Kellnerin zur Küche bringt
HTTP-Antwort = fertiges Gericht, das der Kellner zurückbringt

Jede HTTP-Anfrage hat unter anderem:

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/crud.png

2026/02/03 21:04 3/13 LU16 – HTTP, CRUD & Postman

BZZ - Modulwiki - https://wiki.bzz.ch/

eine Methode (z.B. GET, POST, PUT, DELETE),
einen Pfad5) (z.B. /api/posts, /api/food/1),
optional einen Body6) (z.B. JSON bei POST/PUT)

Der Server reagiert auf eine Anfrage, indem er:

eine passende Route findet (z.B. app.get('/api/posts', …)),1.
etwas ausführt (z.B. Daten lesen oder speichern),2.
genau eine Antwort zurückschickt (z.B. JSON oder Text).3.

Route und Endpoint

Route (Express)

Eine Route ist die Server-Funktion im Code, die beschreibt, was bei einer bestimmten Kombination
passiert:

HTTP-Methode + Pfad (z.B. GET /api/posts)
Handler-Funktion7) (z.B. Daten lesen, JSON senden)

(req, res) => {
 res.send('Hello World!');
}

Das hier ist die Handler-Funktion. req steht für Request (beinhaltet

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/client_server_http_req_response_kitchen.png

Last
update:
2025/12/14
23:05

modul:m290_guko:learningunits:lu16:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/a_intro?rev=1765749930

https://wiki.bzz.ch/ Printed on 2026/02/03 21:04

Anfrage-Parameter) und res steht für Response (Antwort-Objekt).

Beispiel: app.get('/api/posts', …) ist eine Route.

Endpoint (API)

Ein API-Endpoint ist eine Route, die als Daten-Schnittstelle8) für Clients gedacht ist. Meistens
liefert sie die Daten im JSON9) Format zurück.

Beispiel: GET /api/posts → liefert Post-Daten als JSON (API-Endpoint).

CRUD & HTTP-Methoden

CRUD-Operationen werden bei Web-APIs typischerweise folgenden HTTP-Methoden zugeordnet:

CRUD HTTP-Methode Typisches Beispiel einer Route
Create POST POST /api/posts → Neuer Post wird angelegt

Read GET GET /api/posts → Alle Posts anzeigen; GET /api/posts/5 → Post mit
ID 5 anzeigen

Update PUT PUT /api/posts/5 → Post mit ID 5 aktualisieren
Delete DELETE DELETE /api/posts/5 → Post mit ID 5 löschen

Später werden Sie für Ihre eigenen Use Cases (Reisen, Filme, Bücher, …) genau solche Routen
definieren, z.B. GET /api/trips, POST /api/books, usw.

Postman – unser „Frontend-Ersatz“

Im Modul M290 programmieren wir kein eigenes Browser-Frontend. Stattdessen benutzen wir
Postman als Client:

Postman kann GET, POST, PUT, DELETE-Requests an Ihre API senden.
Sie sehen direkt:

den Statuscode (z.B. 200, 201, 400, 404, 500) 10),
die Response-Header 11),
den Response-Body (Text oder JSON).

https://wiki.bzz.ch/_detail/modul/m290_guko/learningunits/lu16/theorie/postman-seeklogo.svg?id=modul%3Am290_guko%3Alearningunits%3Alu16%3Atheorie%3Aa_intro

2026/02/03 21:04 5/13 LU16 – HTTP, CRUD & Postman

BZZ - Modulwiki - https://wiki.bzz.ch/

Sie können im Body bequem JSON eingeben (z.B. neuen post anlegen).

Postman können Sie hier downloaden →
Postman](https://www.postman.com/downloads/|Postman)
App

 Screenshot
Postman-Benutzeroberfläche mit den HTTP-Requests GET/POST/PUT/DELETE.

So können wir die API testen, als wäre schon ein fertiges Frontend vorhanden – nur viel einfacher und
kontrollierter.

Beispiel-API: Social-Media-Posts

Wir verwenden das vereinfachte post-Modell aus Ihrem Social-Media-ERD:

post_id (PK, Nummer)12)

user_id (FK zum User – hier nur als Zahl)13)

title (Titel des Posts)
image_url (Bild-URL)

https://wiki.bzz.ch/https/www.postman.com/downloads/start
https://wiki.bzz.ch/https/www.postman.com/downloads/start
https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/postman-http-methods.png

Last
update:
2025/12/14
23:05

modul:m290_guko:learningunits:lu16:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/a_intro?rev=1765749930

https://wiki.bzz.ch/ Printed on 2026/02/03 21:04

description (Beschreibungstext)
likes (Anzahl Likes)

Express-Server mit Endpoints erstellen

Wir erstellen einen Express-Server mit einer lokalen Liste von Posts (ohne Datenbank-Anbindung
vorerst). Danach bauen wir die ersten Routen:

GET /api/posts → alle Posts
GET /api/posts/:id → ein Post anhand der ID
POST /api/posts → neuen Post hinzufügen

Wie in Projekten aus der Realität arbeiten wir hier mit api-Routen
(/api/posts) – das ist eine Konvention. Wir könnten auch nur
/posts schreiben.

1. Start: Express-API für Posts

Wir bauen auf dem bekannten Server-Setup aus LU15 auf.

import express from 'express';

const app = express();
const port = 3000;

// Middleware: "sitzt" zwischen Anfrage und Route und
verarbeitet Daten.
// express.json() liest den Request-Body und macht daraus
req.body (JSON).
app.use(express.json());

// "Test-Tabelle" lokal

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/users_posts_socialmedia_crowsfoot.drawio.png

2026/02/03 21:04 7/13 LU16 – HTTP, CRUD & Postman

BZZ - Modulwiki - https://wiki.bzz.ch/

let posts = [
{
 post_id: 1,
 user_id: 1,
 title: 'Morning Coffee',
 image_url: 'https://picsum.photos/800/450?random=1',
 description: 'Nothing beats starting the day with a warm
cup of coffee.',
 likes: 10
},
{
 post_id: 2,
 user_id: 2,
 title: 'Sunset Vibes',
 image_url: 'https://picsum.photos/800/450?random=2',
 description: 'Caught this beautiful sunset today! Nature
never disappoints.',
 likes: 12
}
];

// TEST-Route (UI/Info)
app.get('/', (req, res) => {
 res.send('API ist online');
});

app.listen(port, () => {
 console.log(`API läuft auf http://localhost:${port}`);
});

Wenn Sie diesen Server mit npm run dev starten, sollten Sie im Browser unter
http://localhost:3000/ den Text „API ist online“ sehen.

2. READ – Alle Posts abfragen

Jetzt fügen wir eine Route hinzu, die alle Posts zurückliefert:

// READ – alle Posts
app.get('/api/posts', (req, res) => {
 res.status(200).json(posts);
});

Test mit Postman oder Browser

Last
update:
2025/12/14
23:05

modul:m290_guko:learningunits:lu16:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/a_intro?rev=1765749930

https://wiki.bzz.ch/ Printed on 2026/02/03 21:04

Methode: GET
URL: http://localhost:3000/api/posts
Erwartung:

Status 200 OK
JSON-Array mit den Beispiel-Posts

3. READ – Einzelnen Post nach ID abfragen

Wir möchten einen einzelnen Post anhand der post_id abfragen.

// READ – einzelner Post nach ID
app.get('/api/posts/:id', (req, res) => {
 const id = Number(req.params.id); // Pfad-Parameter
(Route-Parameter) holen
 const post = posts.find(p => p.post_id === id);

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/get-request_all_posts.png

2026/02/03 21:04 9/13 LU16 – HTTP, CRUD & Postman

BZZ - Modulwiki - https://wiki.bzz.ch/

if (!post) {
 return res.status(404).send('Post nicht gefunden');
}

res.status(200).json(post);
});

Test mit Postman

Methode: GET
URL: http://localhost:3000/api/posts/1

Erwartung:
Status 200 OK
JSON-Objekt mit post_id: 1

URL: http://localhost:3000/api/posts/999
Status 404 Not Found
Body: Post nicht gefunden

4. CREATE – Neuen Post anlegen

Nun soll ein neuer Post erstellt werden. Dazu schicken wir einen im Request einen „Body“ mit den
notwendigen Daten mit (im JSON-Format).

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/get-request_single_post.png

Last
update:
2025/12/14
23:05

modul:m290_guko:learningunits:lu16:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/a_intro?rev=1765749930

https://wiki.bzz.ch/ Printed on 2026/02/03 21:04

app.post('/api/posts', (req, res) => {
//Daten aus dem Anfrage-Objekt (Request) holen und in Variablen
speichern
const userId = req.body.user_id;
const title = req.body.title;
const imageUrl = req.body.image_url;
const description = req.body.description;

// ganz einfache Validierung (Pflichtfelder) - ohne titel oder
user_id (wer post erstellt hat) können wir keinen neuen Post
erstellen.
if (!title || !userId) {
 return res.status(400).send('Please enter a title and a
user_id');
}

// neue post_id berechnen - das wird in Zukunft die Datenbank
selbst machen.
// Letzte Post-ID aus dem Post-Array herausfinden:
const lastPostId = posts[posts.length - 1].post_id;
const newPostId = lastPostId + 1;

const newPost = {
 post_id: newPostId,
 user_id: userId,
 title: title,
 image_url: imageUrl || '',
 description: description || '',
 likes: 0
};

//neuer Post wird in Post-Array (Liste mit Posts) gespeichert
posts.push(newPost);

//Rückmeldung an Client: neuer Post und Status-Code 201
(Created)
res.status(201).json(newPost);

});

Erklärung

Pflichtfelder: title und user_id müssen vorhanden sein → sonst 400 Bad Request.

2026/02/03 21:04 11/13 LU16 – HTTP, CRUD & Postman

BZZ - Modulwiki - https://wiki.bzz.ch/

Neue ID: Wir nehmen die post_id des letzten Elements im Array und zählen +1.

Antwort: 201 Created + das neu erstellte Post-Objekt als JSON.

Dieser Ansatz mit posts[posts.length - 1] funktioniert nur, wenn:

das Array mindestens 1 Element hat, und
die Posts im Array nach post_id sortiert sind (letzter Post hat die höchste
ID).

In echten Projekten übernimmt das später die Datenbank (AUTO_INCREMENT).

Test mit Postman

Methode: POST1.
URL: http://localhost:3000/api/posts2.
Tab Body → raw → JSON auswählen3.
Beispiel-Body:4.

{
 "user_id": 3,
 "title": "Mein erster echter Post",
 "image_url": "https://example.com/image3.jpg",
 "description": "Gerade mit Postman erstellt!"
}

Send klicken1.

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/post-request_new_post.png

Last
update:
2025/12/14
23:05

modul:m290_guko:learningunits:lu16:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/a_intro?rev=1765749930

https://wiki.bzz.ch/ Printed on 2026/02/03 21:04

Erwartung:
Status 201 Created
JSON-Objekt mit neuer post_id (z.B. 3)

Anschliessend GET /api/posts erneut ausführen → der neue Post sollte in der Liste sein.1.

Ausblick

In dieser Learning Unit haben Sie:

die HTTP-Methoden im Kontext von CRUD kennengelernt,
mit Postman einfache Requests an Ihren Express-Server geschickt,
eine kleine API mit einer lokalen JavaScript-Liste (Array) von posts erstellt (GET /api/posts,
GET /api/posts/:id, POST /api/posts).

In der nächsten Unterrichtseinheit:

ersetzen wir die JavaScript-Liste durch eine MySQL-Tabelle posts,
ergänzen Update (PUT) und Delete (DELETE) für vollständiges CRUD,
bauen einfache Validierung und Fehlerbehandlung (HTTP-Statuscodes) ein,
damit Sie diese Struktur für Ihren eigenen Projekt-Use-Case übernehmen können.

1)

HTTP = „Hypertext Transfer Protocol“: ein Regelwerk, wie Clients und Server Daten austauschen.
2)

Backend-Server = Programm, das Anfragen entgegennimmt und Antworten zurückschickt; oft mit
Datenbank-Logik dahinter.
3)

Client = Programm, das eine Anfrage sendet.
4)

Server = Programm, das Anfragen empfängt und Antworten liefert.
5)

Pfad = der Teil der URL nach Domain/Port, z.B. /food/1.
6)

Body = „Datenkörper“ der Anfrage, z.B. ein JSON-Objekt.
7)

Handler = Funktion, die ausgeführt wird, wenn die Route passt.
8)

Schnittstelle = klar definierter „Zugang“: welche URL, welche Methode, welche Daten kommen
rein/raus.
9)

JSON = Datenformat, das wie ein JavaScript-Objekt aussieht; wird häufig in APIs verwendet.
10)

Statuscode = Zahl, die beschreibt, ob die Anfrage erfolgreich war und warum/nicht.
11)

Header = Zusatzinfos zur Antwort, z.B. Inhaltstyp oder Caching.
12)

PK = Primary Key / Primärschlüssel: eindeutige ID.
13)

FK = Foreign Key / Fremdschlüssel: verweist auf eine ID in einer anderen Tabelle.

2026/02/03 21:04 13/13 LU16 – HTTP, CRUD & Postman

BZZ - Modulwiki - https://wiki.bzz.ch/

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/a_intro?rev=1765749930

Last update: 2025/12/14 23:05

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/a_intro?rev=1765749930

	LU16 – HTTP, CRUD & Postman
	Lernziele
	Von SQL-CRUD zu Web-CRUD
	HTTP-Methoden – wie Bestellungen in einem Restaurant
	Route und Endpoint
	Route (Express)
	Endpoint (API)

	CRUD & HTTP-Methoden
	Postman – unser „Frontend-Ersatz“
	Beispiel-API: Social-Media-Posts
	Express-Server mit Endpoints erstellen
	1. Start: Express-API für Posts
	2. READ – Alle Posts abfragen
	Test mit Postman oder Browser

	3. READ – Einzelnen Post nach ID abfragen
	Test mit Postman

	4. CREATE – Neuen Post anlegen
	Erklärung
	Test mit Postman

	Ausblick

