2026/02/05 17:36 1/13 LU16 - HTTP, CRUD & Postman

LU16 - HTTP, CRUD & Postman

Lernziele

« Sie kénnen erklaren, wie eine HTTP-Anfrage und eine HTTP-Antwort funktionieren. ”

¢ Sie kdnnen die vier wichtigsten HTTP-Methoden GET, POST, PUT, DELETE den CRUD-
Operationen zuordnen.

e Sie verstehen, was eine API und was eine Route in Express ist.

e Sie kdnnen mit Postman einfache Requests an Ihren Express-Server schicken.

¢ Sie kdnnen erste CRUD-Routen flir posts mit einer einfachen Liste erstellen (ohne
Datenbank).

Von SQL-CRUD zu Web-CRUD

Bisher im Modul M290:

* Sie haben in MySQL Tabellen erstellt, Daten importiert und Abfragen geschrieben.
e Sie kennen CRUD:

o Create » INSERT

o Read -» SELECT

o Update -» UPDATE

o Delete -» DELETE

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;gggﬁ:z/m modul:m290_guko:learningunits:lul6:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1766053888

11:31
CREATE -___%

coffee_nature ﬁJ m DELETE

READ

UPDATE

About last night

About Last nightl...

Jetzt Ubertragen wir diese Idee auf das Web: Statt direkt SQL zu tippen, schicken wir HTTP-Anfragen
an einen Backend-Server ? - bei uns: Express (Node.js). Der Server fiihrt fiir uns die passenden
CRUD-Operationen aus und sendet eine Antwort zuruck.

Wir bauen zuerst eine API fur Social-Media-Posts, noch ohne Datenbank - nur mit Daten in einem
Javascript-Objekt. So konnen wir HTTP, Routen und Postman kennenlernen, bevor wir in in der
nachsten Unterrichtseinheit MySQL an Express anbinden.

Schauen Sie sich das Video zum Unterricht an - Einfihrung in APIs und
Umsetzung von CRUD mit express: Einfuhrungs-Video API/CRUD

HTTP-Methoden - wie Bestellungen in einem Restaurant

Stellen Sie sich das so vor:

https://wiki.bzz.ch/ Printed on 2026/02/05 17:36

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/crud.png
https://bzzch-my.sharepoint.com/:v:/g/personal/guido_koch_bzz_ch/IQB1YVY2gQOpRLq-MepYlD29AYjnx6mzg2ci28avf1XljGA?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=6g0Jem

2026/02/05 17:36 3/13 LU16 - HTTP, CRUD & Postman

* Client (Browser oder Postman) = Gast im Restaurant *

* Server (Express/Node.js) = Kiiche ¥

e HTTP-Anfrage = Bestellung, die der Kellner/die Kellnerin zur Kiche bringt
e HTTP-Antwort = fertiges Gericht, das der Kellner zurtckbringt

Jede HTTP-Anfrage hat unter anderem:

¢ eine Methode (z.B. GET, POST, PUT, DELETE),
* einen Pfad” (z.B. /api/posts, /api/food/1),
« optional einen Body® (z.B. JSON bei POST/PUT)

Der Server reagiert auf eine Anfrage, indem er:

1. eine passende Route findet (z.B. app.get('/api/posts’', ..)),
2. etwas ausfuhrt (z.B. Daten lesen oder speichern),
3. genau eine Antwort zurlckschickt (z.B. JSON oder Text).

REQUEST
GET /POST /PUT / DELETE

localhost:3000 Iapilfoodll

Gast Kellner:in Kiche Lager
INSERT INTO /

' UPDATE SET
/—b
L 4

x__/ N 4%
SELECT |/
Browser / API Server Logik Datenbank
Postman / -
Appllkatlon Status: 200

Route und Endpoint

Route (Express)
Eine Route ist die Server-Funktion im Code, die beschreibt, was bei einer bestimmten Kombination
passiert:

e HTTP-Methode + Pfad (z.B. GET /api/posts)
 Handler-Funktion” (z.B. Daten lesen, JSON senden)

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/client_server_http_req_response_kitchen.png

Last

ggg;ﬁ:z/lg modul:m290_guko:learningunits:lul6:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1766053888

11:31

req, res
res.send('Hello World!'

Das hier ist die Handler-Funktion. req steht fir Request (beinhaltet
Anfrage-Parameter) und res steht fur Response (Antwort-Objekt).

Beispiel: app.get('/api/posts', ..) ist eine Route.
Endpoint (API)

Ein API-Endpoint ist eine Route, die als Daten-Schnittstelle” fiir Clients gedacht ist. Meistens
liefert sie die Daten im JSON® Format zuriick.

Beispiel: GET /api/posts - liefert Post-Daten als JSON (API-Endpoint).

CRUD & HTTP-Methoden

CRUD-Operationen werden bei Web-APIs typischerweise folgenden HTTP-Methoden zugeordnet:

CRUD HTTP-Methode|Typisches Beispiel einer Route

Create |POST POST /api/posts - Neuer Post wird angelegt

Read |GET IGDE'g a/nz;ziig/e[r)]osts - Alle Posts anzeigen; GET /api/posts/5 = Post mit
Update|PUT PUT /api/posts/5 — Post mit ID 5 aktualisieren

Delete |DELETE DELETE /api/posts/5 - Post mit ID 5 l6schen

Spater werden Sie fur Ihre eigenen Use Cases (Reisen, Filme, Blicher, ...) genau solche Routen
definieren, z.B. GET /api/trips, POST /api/books, usw.

Postman - unser ,,Frontend-Ersatz*

Im Modul M290 programmieren wir kein eigenes Browser-Frontend. Stattdessen benutzen wir
Postman als Client:

https://wiki.bzz.ch/ Printed on 2026/02/05 17:36

https://wiki.bzz.ch/_detail/modul/m290_guko/learningunits/lu16/theorie/postman-seeklogo.svg?id=modul%3Am290_guko%3Alearningunits%3Alu16%3Atheorie%3Aa_intro

2026/02/05 17:36 5/13 LU16 - HTTP, CRUD & Postman

e Postman kann GET, POST, PUT, DELETE-Requests an Ihre API senden.

¢ Sie sehen direkt:
o den Statuscode (z.B. 200, 201, 400, 404, 500) *”,
o die Response-Header ",
o den Response-Body (Text oder JSON).

¢ Sie kdnnen im Body bequem JSON eingeben (z.B. neuen post anlegen).

Postman konnen Sie hier downloaden —» Postman
downloaden

@ Postman File FEdit View Window Help
Home Workspaces APl Netwaork

GET http:/flocalhost:3000/a

i http:/flocalhost:3000/api/posts/i

http:/flocalhost: 3000/ apifposts

PUT
PATCH
DELETE
HEAD

"first name":

_ _ Screenshot
Postman-Benutzeroberflache mit den HTTP-Requests GET/POST/PUT/DELETE.

So kénnen wir die API testen, als ware schon ein fertiges Frontend vorhanden - nur viel einfacher und
kontrollierter.

Beispiel-API: Social-Media-Posts

Wir verwenden als Beispiel eine vereinfachte post-Tabelle aus einer Social-Media-Datenbank:

BZZ - Modulwiki - https://wiki.bzz.ch/

https://www.postman.com/downloads/
https://www.postman.com/downloads/
https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/postman-http-methods.png

Last

update:
2025/12/18

11:31

modul:m290_guko:learningunits:lul6:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1766053888

e post id (PK, Nummer)*
user 1id (FK zum User - hier nur als Zahl
title (Titel des Posts)
image url (Bild-URL)
description (Beschreibungstext)
likes (Anzahl Likes)

)13)

ost
user P
PK | post_id INTEGER
PK | user_id INTEGER 4\
FK | user_id INTEGER
first_name VARCHAR(100)
title VARCHAR(255)
last_name WVARCHAR(100)
image_url VARCHAR(512)
email WARCHAR(255) -
description TEXT
birthday DATE
. likes INTEGER
profile_img_url VARCHAR(512)

Express-Server mit Endpoints erstellen

Wir erstellen einen Express-Server mit einer lokalen Liste von Posts (ohne Datenbank-Anbindung
vorerst). Danach bauen wir die ersten Routen:

e GET /api/posts - alle Posts
e GET /api/posts/:id - ein Post anhand der ID
e POST /api/posts - neuen Post hinzufugen

i i Wie in Projekten aus der Realitat arbeiten wir hier mit api-Routen

(/api/posts) - das ist eine Konvention. Wir kdnnten auch nur
/posts schreiben.

1. Start: Express-API fiir Posts

Wir bauen auf dem bekannten Server-Setup aus LU15 auf.

import express from 'express'

app = express
port 3000

// Middleware: "sitzt" zwischen Anfrage und Route und
verarbeitet Daten.
// express.json() liest den Request-Body und macht daraus

https://wiki.bzz.ch/ Printed on 2026/02/05 17:36

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/users_posts_socialmedia_crowsfoot.drawio.png

2026/02/05 17:36 7/13 LU16 - HTTP, CRUD & Postman

req.body (JSON).
app.use(express.json

// "Test-Tabelle" lokal

let posts
post id: 1
user id: 1

title: 'Morning Coffee'

image url: 'https://picsum.photos/800/450?random=1"

description: 'Nothing beats starting the day with a warm
cup of coffee.'

likes: 10
post id: 2
user id: 2

title: 'Sunset Vibes'

image url: 'https://picsum.photos/800/4507?random=2"

description: 'Caught this beautiful sunset today! Nature
never disappoints.'

likes: 12

// TEST-Route (UI/Info)
app. /! req, res
res.send('API ist online'

app.listen(port
console.log(API lauft auf http://localhost:${port});

Wenn Sie diesen Server mit npm run dev starten (falls Nodemon - s. LU15 installiert, sonst node

index. js), sollten Sie im Browser unter http://localhost:3000/ den Text ,,API ist online* sehen.

2. READ - Alle Posts abfragen

Jetzt flgen wir eine Route hinzu, die alle Posts zuruckliefert:

// READ — alle Posts
app. ‘/api/posts’ req, res
res.status(200).json(posts

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2025/12/18
11:31

modul:m290_guko:learningunits:lul6:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1766053888

Test mit Postman oder Browser

@ Postman File Edit WView Window Help B 6 & @

Home Workspaces API Network

GET http:/flocalhost:3000/a; »

iF http://localhost:3000/api/posts

Params n le: (7) Body

none form-data x-www-form-urlencoded raw binary GraphQL

e Methode: GET
e URL: http://localhost:3000/api/posts
e Erwartung:

o Status 200 0K

o JSON-Array mit den Beispiel-Posts

3. READ - Einzelnen Post nach ID abfragen

Wir mochten einen einzelnen Post anhand der post_1id abfragen.

// READ — einzelner Post nach ID
app. ‘/api/posts/:id’ req, res

https://wiki.bzz.ch/ Printed on 2026/02/05 17:36

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/get-request_all_posts.png

2026/02/05 17:36 9/13 LU16 - HTTP, CRUD & Postman

id = Number(req.params.id // Pfad-Parameter
(Route-Parameter) holen
post posts.find(p p.post id id
post
res.status .send('Post nicht gefunden'
res.status .json(post
Test mit Postman
M Postman Fio Edit Wiew Window Help a8 & @ l.i_| 2 3 ® 0O m osxm ¥ @ §E Suntapec 2704

Home K5[0 AP Netwaork

Params

e Methode: GET

o URL: http://localhost:3000/api/posts/1
e Erwartung:

o Status 200 0K

o JSON-Objekt mit post id: 1
e URL: http://localhost:3000/api/posts/999

o Status 404 Not Found

o Body: Post nicht gefunden

4. CREATE - Neuen Post anlegen

Nun soll ein neuer Post erstellt werden. Dazu schicken wir einen im Request einen ,,Body“ mit den

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/get-request_single_post.png

Last

;822??2/18 modul:m290_guko:learningunits:lul6:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1766053888

11:31

notwendigen Daten mit (im JSON-Format).

app.post('/api/posts' req, res

//Daten aus dem Anfrage-0Objekt (Request) holen und in Variablen
speichern

const userId req.body.user id

const title req.body.title

const imageUrl req.body.image url

const description req.body.description

// ganz einfache Validierung (Pflichtfelder) - ohne titel oder
user id (wer post erstellt hat) konnen wir keinen neuen Post

erstellen.
if title userld

return res.status(400).send('Please enter a title and a
user id'

// neue post id berechnen - das wird in Zukunft die Datenbank
selbst machen.

// Letzte Post-ID aus dem Post-Array herausfinden:

const lastPostId = posts|posts.length 1].post id

const newPostlId lastPostId 1

const newPost
post id: newPostId
user id: userId
title: title
image url: imageUrl t
description: description
likes: 0

//neuer Post wird in Post-Array (Liste mit Posts) gespeichert
posts.push(newPost

//Rickmeldung an Client: neuer Post und Status-Code 201

(Created)
res.status(201).json(newPost

Erklarung

https://wiki.bzz.ch/ Printed on 2026/02/05 17:36

2026/02/05 17:36 11/13 LU16 - HTTP, CRUD & Postman

Pflichtfelder: title und user_id mulssen vorhanden sein - sonst 400 Bad Request.
Neue ID: Wir nehmen die post id des letzten Elements im Array und zahlen +1.

Antwort: 201 Created + das neu erstellte Post-Objekt als JSON.

Dieser Ansatz mit posts[posts.length - 1] funktioniert nur, wenn:
. e das Array mindestens 1 Element hat, und
@ e die Posts im Array nach post 1id sortiert sind (letzter Post hat die hochste
ID).

In echten Projekten Ubernimmt das spater die Datenbank (AUTO_INCREMENT).

Test mit Postman

@ localhost:3000/apif/posts/

localhost:3000/api/posts/

form-data x-www-form-urlencode

Headers (9) L Body e |Scripts Settings

® raw binary GraphQL

1. Methode: POST

2. URL: http://localhost:3000/api/posts
3. Tab Body —» raw - JSON auswahlen

4. Beispiel-Body:

{
"user_id": 3,
“title": "Mein erster echter Post",
“image url": "https://example.com/image3.jpg",
"description": "Gerade mit Postman erstellt!"
}

1. Send klicken

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/screenshot_2025-12-18_at_11.26.12.png

Last
update:
2025/12/18
11:31

modul:m290_guko:learningunits:lul6:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1766053888

o Erwartung:
= Status 201 Created
» JSON-Objekt mit neuer post_id (z.B. 3)
2. Anschliessend GET /api/posts erneut ausfuhren — der neue Post sollte in der Liste sein.

Ausblick

In dieser Learning Unit haben Sie:

e die HTTP-Methoden im Kontext von CRUD kennengelernt,

¢ mit Postman einfache Requests an Ihren Express-Server geschickt,

e eine kleine APl mit einer lokalen JavaScript-Liste (Array) von posts erstellt (GET /api/posts,
GET /api/posts/:id, POST /api/posts).

In der nachsten Unterrichtseinheit:

e ersetzen wir die JavaScript-Liste durch eine MySQL-Tabelle posts,

e erganzen Update (PUT) und Delete (DELETE) fur vollstandiges CRUD,

e bauen einfache Validierung und Fehlerbehandlung (HTTP-Statuscodes) ein,

e damit Sie diese Struktur fir lhren eigenen Projekt-Use-Case libernehmen kdnnen.

1)

HTTP = ,Hypertext Transfer Protocol”: ein Regelwerk, wie Clients und Server Daten austauschen.
2)

Backend-Server = Programm, das Anfragen entgegennimmt und Antworten zurtckschickt; oft mit
Datenbank-Logik dahinter.

3)

Client = Programm, das eine Anfrage sendet.
4)

Server = Programm, das Anfragen empfangt und Antworten liefert.
5)

Pfad = der Teil der URL nach Domain/Port, z.B. /food/1.

6)

Body = ,Datenkdrper” der Anfrage, z.B. ein JSON-Objekt.

7)

Handler = Funktion, die ausgefuhrt wird, wenn die Route passt.
8)

Schnittstelle = klar definierter ,,Zugang”“: welche URL, welche Methode, welche Daten kommen

rein/raus.
9)

JSON = Datenformat, das wie ein JavaScript-Objekt aussieht; wird haufig in APIs verwendet.
10)

Statuscode = Zahl, die beschreibt, ob die Anfrage erfolgreich war und warum/nicht.
11)

Header = Zusatzinfos zur Antwort, z.B. Inhaltstyp oder Caching.
12)

PK = Primary Key / Primarschlissel: eindeutige ID.
13)

FK = Foreign Key / FremdschlUssel: verweist auf eine ID in einer anderen Tabelle.

https://wiki.bzz.ch/ Printed on 2026/02/05 17:36

2026/02/05 17:36 13/13 LU16 - HTTP, CRUD & Postman

From:

https://wiki.bzz.ch/ - BZZ - Modulwiki [=] I
, n i

Permanent link: "..lt B

https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1766053888 :mj [

Last update: 2025/12/18 11:31 OFL:

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/a_intro?rev=1766053888

	LU16 – HTTP, CRUD & Postman
	Lernziele
	Von SQL-CRUD zu Web-CRUD
	HTTP-Methoden – wie Bestellungen in einem Restaurant
	Route und Endpoint
	Route (Express)
	Endpoint (API)

	CRUD & HTTP-Methoden
	Postman – unser „Frontend-Ersatz“
	Beispiel-API: Social-Media-Posts
	Express-Server mit Endpoints erstellen
	1. Start: Express-API für Posts
	2. READ – Alle Posts abfragen
	Test mit Postman oder Browser

	3. READ – Einzelnen Post nach ID abfragen
	Test mit Postman

	4. CREATE – Neuen Post anlegen
	Erklärung
	Test mit Postman

	Ausblick

