2026/02/05 14:14 1/12 LU16 - HTTP, CRUD & Postman

LU16 - HTTP, CRUD & Postman

Lernziele

« Sie kénnen erklaren, wie eine HTTP-Anfrage und eine HTTP-Antwort funktionieren. ”

¢ Sie kdnnen die vier wichtigsten HTTP-Methoden GET, POST, PUT, DELETE den CRUD-
Operationen zuordnen.

e Sie verstehen, was eine API und was eine Route in Express ist.

e Sie kdnnen mit Postman einfache Requests an Ihren Express-Server schicken.

¢ Sie kdnnen erste CRUD-Routen flir posts mit einer einfachen Liste erstellen (ohne
Datenbank).

Von SQL-CRUD zu Web-CRUD

Bisher im Modul M290:

* Sie haben in MySQL Tabellen erstellt, Daten importiert und Abfragen geschrieben.
e Sie kennen CRUD:

o Create » INSERT

o Read -» SELECT

o Update -» UPDATE

o Delete -» DELETE

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;32238:1/02 modul:m290_guko:learningunits:lul6:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1767390950

22:55
CREATE -___%

coffee_nature ﬁJ m DELETE

READ

UPDATE

About last night

About Last nightl...

Jetzt Ubertragen wir diese Idee auf das Web: Statt direkt SQL zu tippen, schicken wir HTTP-Anfragen
an einen Backend-Server ? - bei uns: Express (Node.js). Der Server fiihrt fiir uns die passenden
CRUD-Operationen aus und sendet eine Antwort zuruck.

Wir bauen zuerst eine API fur Social-Media-Posts, noch ohne Datenbank - nur mit Daten in einem
Javascript-Array. So konnen wir HTTP, Routen und Postman kennenlernen, bevor wir in in der
nachsten Unterrichtseinheit MySQL an Express anbinden.

Schauen Sie sich das Video zum Unterricht an - Einfihrung in APIs und
Umsetzung von CRUD mit express: Einfuhrungs-Video API/CRUD

HTTP-Methoden - wie Bestellungen in einem Restaurant

Stellen Sie sich das so vor:

https://wiki.bzz.ch/ Printed on 2026/02/05 14:14

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/crud.png
https://bzzch-my.sharepoint.com/:v:/g/personal/guido_koch_bzz_ch/IQB1YVY2gQOpRLq-MepYlD29AYjnx6mzg2ci28avf1XljGA?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=6g0Jem

2026/02/05 14:14 3/12 LU16 - HTTP, CRUD & Postman

* Client (Browser oder Postman) = Gast im Restaurant *

* Server (Express/Node.js) = Kiiche ¥

e HTTP-Anfrage = Bestellung, die der Kellner/die Kellnerin zur Kiche bringt
e HTTP-Antwort = fertiges Gericht, das der Kellner zurtckbringt

Jede HTTP-Anfrage hat unter anderem:

¢ eine Methode (z.B. GET, POST, PUT, DELETE),
« einen Pfad” (z.B. Daten lesen, JSON senden)

req, res
res.send('Hello World!"'

Das hier ist die Handler-Funktion. req steht fiir Request (beinhaltet
Anfrage-Parameter) und res steht flir Response (Antwort-Objekt).

Beispiel: app.get('/api/posts', ..) ist eine Route. ==== Endpoint (APl) ==== Ein API-
Endpoint ist eine Route, die als Daten-Schnittstelle((Schnittstelle = klar definierter ,Zugang*:
welche URL, welche Methode, welche Daten kommen rein/raus.)) fur Clients gedacht ist.Meistens
liefert sie die Daten im JSON((JSON = Datenformat, das wie ein JavaScript-Objekt aussieht; wird
haufig in APIs verwendet.)) Format zurtck.

Beispiel: GET /api/posts - liefert Post-Daten als JSON (API-Endpoint).

CRUD & HTTP-Methoden

CRUD-Operationen werden bei Web-APIs typischerweise folgenden HTTP-Methoden zugeordnet:

CRUD HTTP-Methode|Typisches Beispiel einer Route

Create [POST POST /api/posts — Neuer Post wird angelegt

Read |GET IGDEE a/na;;;iig/e%osts - Alle Posts anzeigen; GET /api/posts/5 - Post mit
Update|PUT PUT /api/posts/5 - Post mit ID 5 aktualisieren

Delete |DELETE DELETE /api/posts/5 - Post mit ID 5 I6schen

Spater werden Sie fur Ihre eigenen Use Cases (Reisen, Filme, Blcher, ...) genau solche Routen
definieren, z.B. GET /api/trips, POST /api/books, usw.

Postman - unser , Frontend-Ersatz“

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2026/01/02
22:55

modul:m290_guko:learningunits:lul6:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1767390950

Im Modul M290 programmieren wir kein eigenes Browser-Frontend. Stattdessen benutzen wir
Postman als Client:

= Postman kann GET, POST, PUT, DELETE-Requests an lhre APl senden.
= Sie sehen direkt:
o den Statuscode (z.B. 200, 201, 400, 404, 500) °,
o die Response-Header ’,
o den Response-Body (Text oder JSON).
= Sie konnen im Body bequem JSON eingeben (z.B. neuen post anlegen).

Postman konnen Sie hier downloaden - Postman
downloaden

Postman File Edit View Window Help
Home Workspaces API Metwork
GET http:/flocalhe

i http:/flocalhost:3000/api/posts/1
- HTTP-Methode

e

http://localhost:3000/api/pos

PUT

PATCH

DELETE

HEAD

name ;

Screenshot

https://wiki.bzz.ch/ Printed on 2026/02/05 14:14

https://wiki.bzz.ch/_detail/modul/m290_guko/learningunits/lu16/theorie/postman-seeklogo.svg?id=modul%3Am290_guko%3Alearningunits%3Alu16%3Atheorie%3Aa_intro
https://www.postman.com/downloads/
https://www.postman.com/downloads/
https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/postman-http-methods.png

2026/02/05 14:14 5/12 LU16 - HTTP, CRUD & Postman

Postman-Benutzeroberflache mit den HTTP-Requests GET/POST/PUT/DELETE.

So konnen wir die API testen, als ware schon ein fertiges Frontend vorhanden - nur viel einfacher und

kontrollierter.

Beispiel-API: Social-Media-Posts

Wir verwenden als Beispiel eine vereinfachte post-Tabelle aus einer Social-Media-Datenbank:

e post_id (PK, Nummer)®
user id (FK zum User - hier nur als Zahl)
title (Titel des Posts)
image url (Bild-URL)
description (Beschreibungstext)
likes (Anzahl Likes)

ost
user P
PK | post_id INTEGER
PK | user_id INTEGER N
FK | user_id INTEGER
first_name VARCHAR(100)
) title VARCHAR(255)
last_name WVARCHAR(100)
image_url VARCHAR(512)
email WVARCHAR(255) -
description TEXT
birthday DATE
_ likes INTEGER
profile_img_url VARCHAR(512)

Express-Server mit Endpoints erstellen

Wir erstellen einen Express-Server mit einer lokalen Liste von Posts (ohne Datenbank-Anbindung

vorerst). Danach bauen wir die ersten Routen:

e GET /api/posts — alle Posts

e GET /api/posts/:id - ein Post anhand der ID
e POST /api/posts — neuen Post hinzufigen

Wie in Projekten aus der Realitat arbeiten wir hier mit api-Routen
(/api/posts) - das ist eine Konvention. Wir kénnten auch nur
/posts schreiben.

1. Start: Express-API fiir Posts

Wir bauen auf dem bekannten Server-Setup aus LU15 auf.

import express from 'express'

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/users_posts_socialmedia_crowsfoot.drawio.png

Last
update:

2026/01/02 modul:m290_guko:learningunits:lul6:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1767390950

22:55

app = express
port 3000

// Middleware: "sitzt" zwischen Anfrage und Route und
verarbeitet Daten.

// express.json() liest den Request-Body und macht daraus
req.body (JSON).
app.usel(express.json

// "Test-Tabelle" lokal

let posts
post id: 1
user id: 1

title: 'Morning Coffee'

image url: 'https://picsum.photos/800/4507?random=1"

description: 'Nothing beats starting the day with a warm
cup of coffee.'

likes: 10
post id: 2
user id: 2

title: 'Sunset Vibes'

image url: 'https://picsum.photos/800/450?random=2"

description: 'Caught this beautiful sunset today! Nature
never disappoints.'

likes: 12

// TEST-Route (UI/Info)
app. /! req, res
res.send('API ist online'

app.listen(port
console.log(API lauft auf http://localhost:${port});

Wenn Sie diesen Server mit npm run dev starten (falls Nodemon - s. LU15 installiert, sonst node
index. js), sollten Sie im Browser unter http://localhost:3000/ den Text ,,API ist online“ sehen.

2. READ - Alle Posts abfragen

Jetzt flUgen wir eine Route hinzu, die alle Posts zurtckliefert:

https://wiki.bzz.ch/

Printed on 2026/02/05 14:14

2026/02/05 14:14 7/12

LU16 - HTTP, CRUD & Postman

// READ — alle Posts
app. '/api/posts’ req, res
res.status .json(posts

Test mit Postman oder Browser

& Postman Fie Edit WView Window Help

Home Workspaces API Network

GET http:/flocalhost:3000/a;

AP http://localhost:3000/api/posts

http://localhost:3000/api/posts

Params leade 7) Body

none form-data x-www-farm-urlencoded raw

e Methode: GET
e URL: http://localhost:3000/api/posts
e Erwartung:

o Status 200 OK

o JSON-Array mit den Beispiel-Posts

3. READ - Einzelnen Post nach ID abfragen

GET Anf

binary GraphQL

Wir mochten einen einzelnen Post anhand der post id abfragen.

D 6 & @

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/get-request_all_posts.png

Last
update:
2026/01/02
22:55

modul:m290_guko:learningunits:lul6:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1767390950

// READ — einzelner Post nach ID
app. ‘/api/posts/:id" req, res

id = Number(req.params.id // Pfad-Parameter
(Route-Parameter) holen. :id kommt immer als String ->
Number(...) macht eine Zahl daraus

post posts.find(p p.post id id
post
res.status .send('Post nicht gefunden'
res.status .json(post

Test mit Postman

@ Postman Fio Edit Wiew Window Halp & o6 2GR 2 0 B mewm & O §E Sunidboe 2104
Hame Wo APl Metwork

GET hitp:/N

9T http://lecalhost:3000/api/posts/1

Params

e Methode: GET

o URL: http://localhost:3000/api/posts/1
e Erwartung:

o Status 200 OK

o JSON-Objekt mit post_id: 1
e URL: http://1localhost:3000/api/posts/999

o Status 404 Not Found

o Body: Post nicht gefunden

https://wiki.bzz.ch/ Printed on 2026/02/05 14:14

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/get-request_single_post.png

2026/02/05 14:14 9/12 LU16 - HTTP, CRUD & Postman

4. CREATE - Neuen Post anlegen

Nun soll ein neuer Post erstellt werden. Dazu schicken wir einen im Request einen ,,Body“ mit den
notwendigen Daten mit (im JSON-Format).

app.post('/api/posts' req, res

//Daten aus dem Anfrage-0Objekt (Request) holen und in Variablen
speichern

const user_id req.body.user_id

const title req.body.title

const image url req.body.image url

const description req.body.description

// ganz einfache Validierung (Pflichtfelder) - ohne titel oder
user id (wer post erstellt hat) kénnen wir keinen neuen Post
erstellen.
if (!title user id

return res.status(400).send('Please enter a title and a
user id'

// neue post id berechnen - das wird in Zukunft die Datenbank
selbst machen.

// Letzte Post-ID aus dem Post-Array herausfinden:

const lastPostId posts|posts.length 1].post id

const newPostId = lastPostId 1

const newPost
post id: newPostId
user id: user_id
title: title
image url: image url o
description: description !
likes: 0

//neuer Post wird in Post-Array (Liste mit Posts) gespeichert
posts.push(newPost
//Rickmeldung an Client: neuer Post und Status-Code 201

(Created)
res.status(201).json(newPost

Erklarung

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;832;8:1/02 modul:m290_guko:learningunits:lul6:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1767390950

22:55

Pflichtfelder: title und user id missen vorhanden sein - sonst 400 Bad Request.
Neue ID: Wir nehmen die post_id des letzten Elements im Array und zahlen +1.

Antwort: 201 Created + das neu erstellte Post-Objekt als JSON.

Dieser Ansatz mit posts[posts.length - 1] funktioniert nur, wenn:

¢ das Array mindestens 1 Element hat, und
e die Posts im Array nach post 1id sortiert sind (letzter Post hat die hochste
ID).

In echten Projekten Ubernimmt das spater die Datenbank (AUTO_INCREMENT).

Test mit Postman

i® localhost:3000/apifposts/
localhost:3000/api/posts/

Headers (9) Body

form-data x-www-form-urlencode ® raw binary GraphQL

1. Methode: POST

2. URL: http://localhost:3000/api/posts
3. Tab Body - raw - JSON auswahlen

4. Beispiel-Body:

{
“user id": 3,
"title": "Mein erster echter Post",
"image url": "https://example.com/image3.jpg",
"description": "Gerade mit Postman erstellt!"
}

1. Send klicken
o Erwartung:
= Status 201 Created
= J[SON-Objekt mit neuer post id (z.B. 3)

https://wiki.bzz.ch/ Printed on 2026/02/05 14:14

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/screenshot_2025-12-18_at_11.26.12.png

2026/02/05 14:14 11/12 LU16 - HTTP, CRUD & Postman

2. Anschliessend GET /api/posts erneut ausfihren — der neue Post sollte in der Liste sein.

Ausblick

Auf der nachsten Seite sind die HTTP-Methoden PUT und DELETE am gleichen Beispiel (Social-Media-
Posts) ausgefuhrt. Sie werden diese auch fur Ihr Projekt brauchen.

In der nachsten Unterrichtseinheit (LU17):

e ersetzen wir die JavaScript-Liste durch eine MySQL-Tabelle posts,
e bauen einfache Validierung und Fehlerbehandlung (HTTP-Statuscodes) ein,
e damit Sie diese Struktur fur lhren eigenen Projekt-Use-Case Ubernehmen kdnnen.

1)

HTTP = , Hypertext Transfer Protocol”: ein Regelwerk, wie Clients und Server Daten austauschen.
2)

Backend-Server = Programm, das Anfragen entgegennimmt und Antworten zurtckschickt; oft mit
Datenbank-Logik dahinter.

3)

Client = Programm, das eine Anfrage sendet.
4)

Server = Programm, das Anfragen empfangt und Antworten liefert.
5)

Pfad = der Teil der URL nach Domain/Port, z.B. /api/posts, /api/food/1),

e optional einen Body((Body = , Datenkdrper” der Anfrage, z.B. ein JSON-Objekt bei POST/PUT)
Der Server reagiert auf eine Anfrage, indem er:
1. eine passende Route findet (z.B. app.get('/api/posts’', ..)),
2. etwas ausfuhrt (z.B. Daten lesen oder speichern),
3. genau eine Antwort zurtckschickt (z.B. JSON oder Text).

REQUEST
GET /POST / PUT / DELETE

localhost:3000 /apilfoodll

Lager

INSERT INTO /
UPDATE SET

Gast Kellner:in

&

SELECT
Server Logik Datenbank \ | /

Browser /
Postman /
Applikation Status: 200
===== Route und Endeint ===== ==== Route (EXDI‘ESS) ==== Eine Route ist die Server-

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/client_server_http_req_response_kitchen.png

Last
update:
2026/01/02
22:55

modul:m290_guko:learningunits:lul6:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1767390950

Funktion im Code, die beschreibt, was bei einer bestimmten Kombination passiert:
o HTTP-Methode + Pfad (z.B. GET /api/posts)

o Handler-Funktion((Handler = Funktion, die ausgefthrt wird, wenn die Route passt.
6)

Statuscode = Zahl, die beschreibt, ob die Anfrage erfolgreich war und warum/nicht.
7)

Header = Zusatzinfos zur Antwort, z.B. Inhaltstyp oder Caching.

8)

PK = Primary Key / Primarschlissel: eindeutige ID.
9)

FK = Foreign Key / Fremdschlussel: verweist auf eine ID in einer anderen Tabelle.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/a_intro?rev=1767390950

Last update: 2026/01/02 22:55

https://wiki.bzz.ch/ Printed on 2026/02/05 14:14

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/a_intro?rev=1767390950

	LU16 – HTTP, CRUD & Postman
	Lernziele
	Von SQL-CRUD zu Web-CRUD
	HTTP-Methoden – wie Bestellungen in einem Restaurant
	CRUD & HTTP-Methoden
	Postman – unser „Frontend-Ersatz“
	Beispiel-API: Social-Media-Posts
	Express-Server mit Endpoints erstellen
	1. Start: Express-API für Posts
	2. READ – Alle Posts abfragen
	Test mit Postman oder Browser

	3. READ – Einzelnen Post nach ID abfragen
	Test mit Postman

	4. CREATE – Neuen Post anlegen
	Erklärung
	Test mit Postman

	Ausblick

