
2026/02/03 09:13 1/6 LU16b – UPDATE (PUT) & DELETE (DELETE) mit Express und Postman

BZZ - Modulwiki - https://wiki.bzz.ch/

LU16b – UPDATE (PUT) & DELETE (DELETE)
mit Express und Postman

Lernziele

Sie können einen bestehenden Post über PUT /api/posts/:id aktualisieren (Update).
Sie können einen bestehenden Post über DELETE /api/posts/:id löschen (Delete).
Sie wissen, wie Sie req.params.id (Route-Parameter) und req.body (Body-Daten)
verwenden.
Sie verwenden passende HTTP-Statuscodes (200, 400, 404).
Sie können die Endpoints mit Postman testen.

Voraussetzungen

Damit PUT und DELETE funktionieren, muss in Ihrem index.js weiterhin Folgendes vorhanden sein:

app.use(express.json()); (damit JSON aus dem Request-Body in req.body landet)
das Array posts mit Beispiel-Daten
die bereits erstellten Routes GET /api/posts, GET /api/posts/:id und POST
/api/posts

Fügen Sie die folgenden Routen unterhalb Ihrer bisherigen Routen in index.js
ein (die Reihenfolge ist nicht entscheidend, aber Übersicht hilft).

UPDATE – Post aktualisieren (PUT /api/posts/:id)

Was bedeutet UPDATE mit PUT?

Mit PUT aktualisieren Sie einen bestehenden Datensatz. Der Client schickt dazu einen Request an:

/api/posts/:id → id ist die post_id des Posts, der geändert werden soll.
Die neuen Werte werden als JSON im Request-Body mitgeschickt.

Code: PUT-Route

// UPDATE – vorhandenen Post aktualisieren
app.put('/api/posts/:id', (req, res) => {
 const id = Number(req.params.id);

Last
update:
2026/01/02
23:06

modul:m290_guko:learningunits:lu16:theorie:b_update_delete https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/b_update_delete

https://wiki.bzz.ch/ Printed on 2026/02/03 09:13

 // Post suchen nach der ID aus dem Request im posts-Array
(Liste)
 const post = posts.find(p => p.post_id === id);

 if (!post) {
 return res.status(404).send('Post nicht gefunden');
 }

 // Alle Felder werden erwartet (PUT ersetzt alles)
 const user_id = req.body.user_id;
 const title = req.body.title;
 const image_url = req.body.image_url;
 const description = req.body.description;
 const likes = req.body.likes;

 // Validierung: sind wirklich alle Felder vorhanden?
 // likes kann 0 sein -> deshalb auf undefined prüfen
 if (
 user_id === undefined ||
 title === undefined ||
 image_url === undefined ||
 description === undefined ||
 likes === undefined
) {
 return res.status(400).send('Bitte user_id, title,
image_url, description und likes mitsenden (PUT ersetzt
alles).');
 }

 // Post überschreiben
 post.user_id = user_id;
 post.title = title;
 post.image_url = image_url;
 post.description = description;
 post.likes = likes;

 // Antwort: 200 OK + aktualisiertes Objekt
 res.status(200).json(post);
});

Test mit Postman (PUT)

2026/02/03 09:13 3/6 LU16b – UPDATE (PUT) & DELETE (DELETE) mit Express und Postman

BZZ - Modulwiki - https://wiki.bzz.ch/

Methode: PUT1.
URL: http://localhost:3000/api/posts/22.
Tab Body → raw → JSON3.
Beispiel-Body:4.

{
 "title": "Sunset Vibes (updated)",
 "likes": 99
}

Erwartung:

Status 200 OK
JSON-Objekt des aktualisierten Posts (post_id: 2) mit neuem title und likes
Danach GET /api/posts/2 testen → Änderungen sollten sichtbar sein

DELETE – Post löschen (DELETE /api/posts/:id)

Was bedeutet DELETE?

Mit DELETE entfernen Sie einen Datensatz. Der Client schickt dazu einen Request an:

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/screenshot_2025-12-18_at_13.34.19.png

Last
update:
2026/01/02
23:06

modul:m290_guko:learningunits:lu16:theorie:b_update_delete https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/b_update_delete

https://wiki.bzz.ch/ Printed on 2026/02/03 09:13

DELETE /api/posts/:id

Der Server sucht den passenden Post und entfernt ihn aus der Liste.

Code: DELETE-Route

// DELETE – Post löschen
app.delete('/api/posts/:id', (req, res) => {
 const id = Number(req.params.id);

 // Index suchen (praktisch fürs Löschen)
 const index = posts.findIndex(p => p.post_id === id);

 if (index === -1) {
 return res.status(404).send('Post nicht gefunden');
 }

 // Löschen: splice gibt ein Array zurück -> [0] ist das
gelöschte Objekt
 const deletedPost = posts.splice(index, 1)[0];

 // Antwort: 200 OK + gelöschter Post (zur Kontrolle)
 res.status(200).json(deletedPost);
});

Test mit Postman (DELETE)

2026/02/03 09:13 5/6 LU16b – UPDATE (PUT) & DELETE (DELETE) mit Express und Postman

BZZ - Modulwiki - https://wiki.bzz.ch/

Methode: DELETE1.
URL: http://localhost:3000/api/posts/12.

Erwartung:

Status 200 OK
JSON-Objekt des gelöschten Posts

Danach:

GET /api/posts → der gelöschte Post sollte nicht mehr in der Liste sein
GET /api/posts/1 → sollte 404 Not Found liefern

Typische Fehlerquellen

req.params.id ist immer ein String → mit Number(…) oder parseInt(…) umwandeln.
Bei PUT vergessen viele, den Request-Body als JSON zu senden → in Postman unbedingt raw +
JSON wählen.
Bei PUT und DELETE immer prüfen: existiert das Objekt? → sonst 404 zurückgeben.
Bei PUT: wenn keine Felder im Body sind → 400 zurückgeben (sonst „Update ohne Update“).

Ausblick

Sie können jetzt CRUD auf API-Ebene komplett:

Create → POST /api/posts
Read → GET /api/posts und GET /api/posts/:id
Update → PUT /api/posts/:id
Delete → DELETE /api/posts/:id

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/screenshot_2025-12-18_at_13.40.40.png

Last
update:
2026/01/02
23:06

modul:m290_guko:learningunits:lu16:theorie:b_update_delete https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/b_update_delete

https://wiki.bzz.ch/ Printed on 2026/02/03 09:13

In der nächsten Unterrichtseinheit ersetzen wir die lokale Liste posts durch eine echte MySQL-
Tabelle und führen dieselben Operationen über SQL aus.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/b_update_delete

Last update: 2026/01/02 23:06

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/b_update_delete

	LU16b – UPDATE (PUT) & DELETE (DELETE) mit Express und Postman
	Lernziele
	Voraussetzungen
	UPDATE – Post aktualisieren (PUT /api/posts/:id)
	Was bedeutet UPDATE mit PUT?
	Code: PUT-Route
	Test mit Postman (PUT)

	DELETE – Post löschen (DELETE /api/posts/:id)
	Was bedeutet DELETE?
	Code: DELETE-Route
	Test mit Postman (DELETE)

	Typische Fehlerquellen
	Ausblick

