2026/02/03 09:13 1/6 LU16b - UPDATE (PUT) & DELETE (DELETE) mit Express und Postman

LU16b - UPDATE (PUT) & DELETE (DELETE)
mit Express und Postman

Lernziele

¢ Sie kdnnen einen bestehenden Post Uber PUT /api/posts/:id aktualisieren (Update).

e Sie kénnen einen bestehenden Post Uber DELETE /api/posts/:id ldschen (Delete).

e Sie wissen, wie Sie req.params. id (Route-Parameter) und req.body (Body-Daten)
verwenden.

¢ Sie verwenden passende HTTP-Statuscodes (200, 400, 404).

e Sie konnen die Endpoints mit Postman testen.

Voraussetzungen

Damit PUT und DELETE funktionieren, muss in lhrem index. js weiterhin Folgendes vorhanden sein:

e app.use(express.json()); (damit JSON aus dem Request-Body in req.body landet)

e das Array posts mit Beispiel-Daten

e die bereits erstellten Routes GET /api/posts, GET /api/posts/:id und POST
/api/posts

Flgen Sie die folgenden Routen unterhalb |hrer bisherigen Routen in index. js
£ ein (die Reihenfolge ist nicht entscheidend, aber Ubersicht hilft).

UPDATE - Post aktualisieren (PUT /api/posts/:id)

Was bedeutet UPDATE mit PUT?

Mit PUT aktualisieren Sie einen bestehenden Datensatz. Der Client schickt dazu einen Request an:

e /api/posts/:id —» idist die post id des Posts, der geandert werden soll.
e Die neuen Werte werden als JSON im Request-Body mitgeschickt.

Code: PUT-Route

// UPDATE — vorhandenen Post aktualisieren
app.put('/api/posts/:id' req, res
id Number(req.params.id

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;8(21238:1/02 modul:m290_guko:learningunits:lul6:theorie:b_update_delete https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/b_update_delete

23:06

// Post suchen nach der ID aus dem Request im posts-Array
(Liste)
post posts.find(p p.post id id

post
res.status(404).send('Post nicht gefunden'

// Alle Felder werden erwartet (PUT ersetzt alles)
user id req.body.user id
title req.body.title
image url req.body.image url
description req.body.description
likes req.body. likes

// Validierung: sind wirklich alle Felder vorhanden?
// likes kann 0 sein -> deshalb auf undefined priifen

user id undefined
title undefined

image url undefined
description undefined
likes undefined

res.status(400).send('Bitte user_id, title,
image url, description und likes mitsenden (PUT ersetzt
alles).'

// Post liberschreiben
post.user id = user_id
post.title = title

post.image url image url
post.description description
post.likes likes

// Antwort: 200 OK + aktualisiertes Objekt
res.status(200).json(post

Test mit Postman (PUT)

https://wiki.bzz.ch/ Printed on 2026/02/03 09:13

2026/02/03 09:13 3/6 LU16b - UPDATE (PUT) & DELETE (DELETE) mit Express und Postman

i Iocalhost:BO%’ .

localhost:3000/apif/posts/2 "——_ D: gibt an, welcher Post geandert wirc

= Docs Params Authorization Body Scripts Settings

none form-data x-www-form-urlencoded @ raw binary GraphQL

1. Methode: PUT

2. URL: http://localhost:3000/api/posts/2
3. Tab Body - raw -» JSON

4. Beispiel-Body:

{
“title": "Sunset Vibes (updated)",
"likes": 99

Erwartung:

e Status 200 OK
* JSON-Objekt des aktualisierten Posts (post _id: 2) mit neuem title und likes
 Danach GET /api/posts/2 testen » Anderungen sollten sichtbar sein

DELETE - Post loschen (DELETE /api/posts/:id)

Was bedeutet DELETE?

Mit DELETE entfernen Sie einen Datensatz. Der Client schickt dazu einen Request an:

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/screenshot_2025-12-18_at_13.34.19.png

Last

;8(21238:1/02 modul:m290_guko:learningunits:lul6:theorie:b_update_delete https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/b_update_delete

23:06

e DELETE /api/posts/:id

Der Server sucht den passenden Post und entfernt ihn aus der Liste.

Code: DELETE-Route

// DELETE — Post ldschen
app. ‘/api/posts/:id'’ req, res
id = Number(req.params.id

// Index suchen (praktisch furs Ldschen)
index = posts.findIndex(p p.post id id

index 1

res.status(404).send('Post nicht gefunden'

// Léschen: splice gibt ein Array zurick -> [0] ist das
geloschte Objekt
deletedPost posts.splice(index, 1)[0

// Antwort: 200 OK + geléschter Post (zur Kontrolle)
res.status(200).json(deletedPost

Test mit Postman (DELETE)

https://wiki.bzz.ch/ Printed on 2026/02/03 09:13

2026/02/03 09:13 5/6 LU16b - UPDATE (PUT) & DELETE (DELETE) mit Express und Postman

e http:/flocalhost:3000/api/posts/1

’/__-——-b DELETE

DELETE http:/flocalh

% none form-data x-www-form-urlencoded

Body

{3} JSON ~

1. Methode: DELETE
2. URL: http://localhost:3000/api/posts/1

Erwartung:

e Status 200 OK
¢ JSON-Objekt des geldschten Posts

Danach:

e GET /api/posts — der geléschte Post sollte nicht mehr in der Liste sein
e GET /api/posts/1 - sollte 404 Not Found liefern

Typische Fehlerquellen

e req.params.id ist immer ein String - mit Number(..) oder parseInt(..) umwandeln.

e Bei PUT vergessen viele, den Request-Body als JSON zu senden - in Postman unbedingt raw +
JSON wahlen.

e Bei PUT und DELETE immer prufen: existiert das Objekt? - sonst 404 zurlckgeben.

e Bei PUT: wenn keine Felder im Body sind = 400 zuruckgeben (sonst ,Update ohne Update”).

Ausblick

Sie kénnen jetzt CRUD auf API-Ebene komplett:

e Create » POST /api/posts

e Read » GET /api/posts und GET /api/posts/:id
e Update -» PUT /api/posts/:id

e Delete » DELETE /api/posts/:id

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/screenshot_2025-12-18_at_13.40.40.png

Last

;832;8:1/02 modul:m290_guko:learningunits:lul6:theorie:b_update_delete https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/b_update_delete

23:06

In der nachsten Unterrichtseinheit ersetzen wir die lokale Liste posts durch eine echte MySQL-
Tabelle und fuhren dieselben Operationen Uber SQL aus.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: 15
https://wiki.bzz.ch/modul/m290_guko/learningunits/lul6/theorie/b_update_delete "

Last update: 2026/01/02 23:06

https://wiki.bzz.ch/ Printed on 2026/02/03 09:13

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu16/theorie/b_update_delete

	LU16b – UPDATE (PUT) & DELETE (DELETE) mit Express und Postman
	Lernziele
	Voraussetzungen
	UPDATE – Post aktualisieren (PUT /api/posts/:id)
	Was bedeutet UPDATE mit PUT?
	Code: PUT-Route
	Test mit Postman (PUT)

	DELETE – Post löschen (DELETE /api/posts/:id)
	Was bedeutet DELETE?
	Code: DELETE-Route
	Test mit Postman (DELETE)

	Typische Fehlerquellen
	Ausblick

