
2026/02/03 12:14 1/14 LU17 – CRUD mit Express & MySQL

BZZ - Modulwiki - https://wiki.bzz.ch/

LU17 – CRUD mit Express & MySQL

Lernziele

Sie können Ihre MySQL-Datenbank aus einem Express-Server heraus ansprechen.
Sie können die CRUD-Routen aus LU16 (GET, POST, PUT, DELETE) so erweitern, dass sie mit
einer echten Tabelle posts arbeiten.
Sie setzen einfache Validierung ein (Pflichtfelder prüfen).
Sie verwenden passende HTTP-Statuscodes (200, 201, 400, 404, 500).
Sie testen alle Operationen mit Postman.

Rückblick auf LU16

In LU16 haben Sie eine API für Social-Media-Posts gebaut – aber noch ohne Datenbank:

Daten waren in einer JavaScript-Liste posts gespeichert (In-Memory).
Ihre Routen waren z.B.:

GET /api/posts
GET /api/posts/:id
POST /api/posts

In LU17 ersetzen Sie diese In-Memory-Liste durch eine echte Datenbank:

Die Daten kommen aus der MySQL-Tabelle posts.
Ihr Express-Server ist die Brücke zwischen Client (Postman) und Datenbank.
Die gleiche Idee bleibt: HTTP-Anfrage → Route → Logik/SQL → HTTP-Antwort.

Last update:
2026/01/12
07:43

modul:m290_guko:learningunits:lu17:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lu17/theorie/a_intro

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

HTTP-Statuscodes

Wenn Sie mit Postman testen, sehen Sie immer einen Statuscode. Dieser Code ist Ihr „Kurzfazit“, ob
der Request geklappt hat.

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/client_server_http_req_response_kitchen.png

2026/02/03 12:14 3/14 LU17 – CRUD mit Express & MySQL

BZZ - Modulwiki - https://wiki.bzz.ch/

Situation Typischer
Statuscode Bedeutung

Erfolgreich Daten gelesen (z.B.
GET) 200 OK (Daten kommen zurück)

Erfolgreich Datensatz erstellt
(POST) 201 Created (Neuer Datensatz

wurde erstellt)
Erfolgreich aktualisiert (PUT) 200 OK (Update hat geklappt)

Erfolgreich gelöscht (DELETE) 200
OK (Löschen hat geklappt; Sie
können zur Kontrolle z.B. das
gelöschte Objekt oder eine
Message zurückgeben)

Pflichtfelder fehlen / ungültige
Eingabe 400

Bad Request (Client hat
falsche/fehlende Daten
geschickt)

ID existiert nicht 404 Not Found (Datensatz wurde
nicht gefunden)

Datenbank-/Serverfehler 500 Internal Server Error (Problem
auf Server/DB-Seite)

Last update:
2026/01/12
07:43

modul:m290_guko:learningunits:lu17:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lu17/theorie/a_intro

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

Vorbereitung: MySQL-Datenbank "social_media"

Für die Verbindung mit MySQL benötigen wir eine bestehende Datenbank. Wir arbeiten mit der
Datenbank „social_media“, welche die Tabellen users und posts beinhaltet.

Laden Sie hier den SQL-Dump herunter und lassen Sie das
Skript in Webstorm laufen via Run SQL Script… (eine
Anleitung, wie das prinzipiell geht finden Sie in LU09).

SQL-Dump einer fiktiven Social-Media-Datenbank

Das ERD der Datenbank sieht so aus:

Eine mögliche Tabellenstruktur für die Tabelle „posts“:

Spalte Datentyp Beschreibung
id INT, PRIMARY KEY, AUTO_INCREMENT Primärschlüssel
user_id INT Referenz auf User (FK)
title VARCHAR(255) Titel des Posts
image_url VARCHAR(512) Bild-URL
description TEXT Beschreibung
likes INT Anzahl Likes

Achtung: Die Primär-Spalte heisst neu id und nicht mehr
post_id wie in LU16.

Schritt 1: mysql2 installieren

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu17/theorie/social_media_db-dump.sql.zip
https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu17/theorie/social_media_db-dump.sql.zip
https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu17/theorie/social_media_crowsfoot_ids_updated.drawio.png

2026/02/03 12:14 5/14 LU17 – CRUD mit Express & MySQL

BZZ - Modulwiki - https://wiki.bzz.ch/

Damit Node.js mit MySQL sprechen kann, verwenden wir mysql2.

npm install mysql2

Schritt 2: connect.js erstellen (DB-Verbindung auslagern)

Damit index.js übersichtlich bleibt, erstellen Sie eine eigene Datei connect.js. Diese Datei
erstellt eine Verbindung und exportiert sie, damit Sie sie in Ihren Routes mit db.query(…)
verwenden können.

import mysql from 'mysql2';

// Hinweis: Verwenden Sie hier Ihren AppUser (nicht root).
// Port 3306 ist der Standard-Port für MySQL auf localhost.
const db = mysql.createConnection({
 host: 'localhost',
 user: 'app_user',
 password: 'YOUR_PASSWORD_HERE',
 port: 3306,
 database: 'social_media',
});

// connect() öffnet die Verbindung und gibt bei
Erfolg/Fehler eine Meldung aus.
db.connect((err) => {
 if (err) {
 console.error('DB-Verbindung fehlgeschlagen:', err);
 return;
 }
 console.log('Mit MySQL verbunden');
});

export { db };

Was passiert hier?

db ist die offene Verbindung und kann in index.js importiert werden (z.B. import { db }
from „./connect.js“;).
In der LB03 sollen Sie nicht als root arbeiten → verwenden Sie einen AppUser.

Last update:
2026/01/12
07:43

modul:m290_guko:learningunits:lu17:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lu17/theorie/a_intro

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

Schritt 3: index.js vorbereiten (Express + DB verwenden)

Sie bauen auf dem Setup aus LU16 auf:

app.use(express.json()) bleibt wichtig (für req.body).
Sie importieren db aus connect.js. Die Verbindung wird in connect.js bereits aufgebaut
(db.connect(…)).
Löschen Sie die Test-Tabelle aus LU16 let posts = [{ post_id: 1, … }];

import express from 'express';
import { db } from './connect.js';

const app = express();
const port = 3000;

app.use(express.json());

// Test-Route: schnell prüfen, ob der Server läuft
app.get('/', (req, res) => {
 res.send('API mit Datenbank ist online');
});

// Optional: kleine Test-Route für DB (zeigt Serverzeit aus
MySQL)
app.get('/api/db-test', (req, res) => {
 db.query('SELECT NOW() AS server_time', (err, results) =>
{
 if (err) {
 console.error('DB-Fehler bei /api/db-test:', err);
 return res.status(500).send('DB-Test fehlgeschlagen');
 }
 res.status(200).json(results[0]);
 });
});

// Server starten
app.listen(port, () => {
 console.log(`API läuft auf http://localhost:${port}`);
});

Was passiert hier?

db kommt aus connect.js und ist die MySQL-Verbindung.
Ihre Routen können direkt db.query(…) verwenden.
Mit /api/db-test prüfen Sie schnell, ob die DB erreichbar ist (Status 200 + JSON), ohne
schon CRUD zu programmieren.

2026/02/03 12:14 7/14 LU17 – CRUD mit Express & MySQL

BZZ - Modulwiki - https://wiki.bzz.ch/

Server starten Nicht alle Lernenden haben nodemon installiert. Beides ist möglich:

node index.js

oder (falls Sie ein dev-Script mit nodemon haben):

npm run dev

CRUD-Routen: posts jetzt mit echter MySQL-Tabelle

Ab hier ersetzen Sie die In-Memory-Liste aus LU16 durch SQL.

Konvention: Wir bleiben wie in LU16 bei /api/posts (statt nur /posts), damit
Ihre API klar erkennbar ist.

READ: alle Posts (GET /api/posts)

// READ – alle Posts aus der DB
// Route: GET http://localhost:3000/api/posts
app.get('/api/posts', (req, res) => {

 // SQL-Abfrage: alle Spalten, die wir zurückgeben möchten
 const sql = `
 SELECT id, user_id, title, image_url, description, likes
 FROM posts
 `;

 // db.query(...) führt die SQL-Abfrage aus
 db.query(sql, (err, results) => {

 // Falls die DB einen Fehler liefert -> 500
 if (err) {
 console.error('DB-Fehler bei GET /api/posts:', err);
 return res.status(500).send('Serverfehler bei der
Post-Abfrage');
 }

 // results ist ein Array mit Zeilen (Rows)

Last update:
2026/01/12
07:43

modul:m290_guko:learningunits:lu17:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lu17/theorie/a_intro

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

 res.status(200).json(results);
 });
});

Test in Postman

Methode: GET
URL: http://localhost:3000/api/posts
Erwartung: 200 + JSON-Liste

READ: einzelner Post (GET /api/posts/:id)

// READ – einzelner Post nach ID aus der DB
// Route: GET http://localhost:3000/api/posts/1
app.get('/api/posts/:id', (req, res) => {

 // Route-Parameter :id kommt immer als String ->
Number(...) macht eine Zahl daraus
 const id = Number(req.params.id);

 // Einfache Validierung: ist id überhaupt eine Zahl?
 if (Number.isNaN(id)) {
 return res.status(400).send('Ungültige ID (muss eine
Zahl sein)');
 }

 const sql = `
 SELECT id, user_id, title, image_url, description, likes
 FROM posts
 WHERE id = ?
 `;

 // Platzhalter ? wird durch id ersetzt -> Schutz vor SQL-
Injection
 db.query(sql, [id], (err, results) => {

 if (err) {
 console.error('DB-Fehler bei GET /api/posts/:id:',
err);
 return res.status(500).send('Serverfehler bei der
Post-Abfrage');
 }

 // Wenn keine Zeile gefunden -> 404
 if (results.length === 0) {

2026/02/03 12:14 9/14 LU17 – CRUD mit Express & MySQL

BZZ - Modulwiki - https://wiki.bzz.ch/

 return res.status(404).send('Post nicht gefunden');
 }

 // results[0] ist der erste (und hier einzige) Treffer
 res.status(200).json(results[0]);
 });
});

CREATE: neuen Post erstellen (POST /api/posts)

// CREATE – neuen Post in der DB anlegen
// Route: POST http://localhost:3000/api/posts
app.post('/api/posts', (req, res) => {

 // Daten kommen aus dem Request-Body (Postman: Body -> raw
-> JSON)
 const user_id = req.body.user_id;
 const title = req.body.title;
 const image_url = req.body.image_url;
 const description = req.body.description;

 // Validierung: Pflichtfelder
 if (user_id === undefined || user_id === null || title ===
undefined || title === null || title === '') {
 return res.status(400).send('Bitte mindestens user_id
und title angeben.');
 }

 const sql = `
 INSERT INTO posts (user_id, title, image_url,
description, likes)
 VALUES (?, ?, ?, ?, 0)
 `;

 const values = [
 user_id,
 title,
 image_url || '',
 description || ''
];

 // INSERT ausführen
 db.query(sql, values, (err, result) => {

 if (err) {
 console.error('DB-Fehler bei POST /api/posts:', err);
 return res.status(500).send('Serverfehler beim

Last update:
2026/01/12
07:43

modul:m290_guko:learningunits:lu17:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lu17/theorie/a_intro

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

Erstellen des Posts');
 }

 // insertId kommt von MySQL AUTO_INCREMENT
 const newPost = {
 id: result.insertId,
 user_id: user_id,
 title: title,
 image_url: image_url || '',
 description: description || '',
 likes: 0
 };

 res.status(201).json(newPost);
 });
});

Test in Postman

Test-Body (Postman → Body → raw → JSON)

{
 "user_id": 1,
 "title": "Neuer DB-Post",
 "image_url": "https://example.com/post.jpg",
 "description": "Dieser Post wurde in MySQL gespeichert."
}

UPDATE: Post ändern (PUT /api/posts/:id)

In LU16b haben Sie einen Post so aktualisiert: Der ganze Datensatz wird ersetzt, wenn wir ein Update
machen. Genau diese Logik übernehmen wir jetzt – der Unterschied ist nur: statt im Array ändern wir
jetzt die MySQL-Tabelle posts.

// UPDATE – Post vollständig ersetzen (PUT)
// Route: PUT http://localhost:3000/api/posts/1
app.put('/api/posts/:id', (req, res) => {

 const id = Number(req.params.id);

 if (Number.isNaN(id)) {

2026/02/03 12:14 11/14 LU17 – CRUD mit Express & MySQL

BZZ - Modulwiki - https://wiki.bzz.ch/

 return res.status(400).send('Ungültige ID (muss eine
Zahl sein)');
 }

 // Alle Felder werden erwartet (PUT ersetzt alles)
 const user_id = req.body.user_id;
 const title = req.body.title;
 const image_url = req.body.image_url;
 const description = req.body.description;
 const likes = req.body.likes;

 // Validierung: fehlen Felder?
 // likes kann 0 sein -> deshalb auf undefined prüfen
 if (
 user_id === undefined ||
 title === undefined ||
 image_url === undefined ||
 description === undefined ||
 likes === undefined
) {
 return res.status(400).send('Bitte user_id, title,
image_url, description und likes mitsenden (PUT ersetzt
alles).');
 }

 const sql = `
 UPDATE posts
 SET user_id = ?, title = ?, image_url = ?, description =
?, likes = ?
 WHERE id = ?
 `;

 const values = [user_id, title, image_url, description,
likes, id];

 db.query(sql, values, (err, result) => {
 if (err) {
 console.error('DB-Fehler bei PUT /api/posts/:id:',
err);
 return res.status(500).send('Serverfehler beim
Aktualisieren des Posts');
 }

 if (result.affectedRows === 0) {
 return res.status(404).send('Post nicht gefunden');
 }

 // 200 OK + das "neue" Objekt zurückgeben
 res.status(200).json({
 id: id,
 user_id: user_id,

Last update:
2026/01/12
07:43

modul:m290_guko:learningunits:lu17:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lu17/theorie/a_intro

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

 title: title,
 image_url: image_url,
 description: description,
 likes: likes
 });
 });
});

Test in Postman

Test-Body

{
 "user_id": 1,
 "title": "Titel (replaced)",
 "image_url": "https://example.com/new.jpg",
 "description": "Dieser Post wurde komplett ersetzt.",
 "likes": 5
}

Erwartung:

Status 200 OK
JSON-Objekt des aktualisierten Posts (inkl. neuem title und likes)

DELETE: Post löschen (DELETE /api/posts/:id)

// DELETE – Post löschen
app.delete('/api/posts/:id', (req, res) => {

 const id = Number(req.params.id);

 if (Number.isNaN(id)) {
 return res.status(400).send('Ungültige ID (muss eine
Zahl sein)');
 }

 const sql = 'DELETE FROM posts WHERE id = ?';

 db.query(sql, [id], (err, result) => {
 if (err) {
 console.error('DB-Fehler bei DELETE /api/posts/:id:',

2026/02/03 12:14 13/14 LU17 – CRUD mit Express & MySQL

BZZ - Modulwiki - https://wiki.bzz.ch/

err);
 return res.status(500).send('Serverfehler beim Löschen
des Posts');
 }

 if (result.affectedRows === 0) {
 return res.status(404).send('Post nicht gefunden');
 }

 // Antwort: 200 + Message
 res.status(200).json({ message: `Post mit id=${id} wurde
gelöscht.` });

 });
});

Test mit Postman

Methode: DELETE
URL: http://localhost:3000/api/posts/1

Erwartung:

Status 200 OK
JSON-Objekt des gelöschten Posts
Danach GET /api/posts/1 → 404 Not Found

Typische Fehlerquellen (aus LU16, jetzt noch wichtiger)

req.params.id ist immer ein String → mit Number(…) umwandeln (und Number.isNaN(…)
prüfen).
Ohne app.use(express.json()) ist req.body leer.
SQL immer mit Platzhaltern ? schreiben (Prepared Statements).
Denken Sie bei db.query(…) immer an die drei Fälle:

Eingaben ok? → sonst 400
Datensatz gefunden? → sonst 404 (results.length === 0 oder affectedRows ===
0)
DB-Fehler? → 500

Transfer auf Ihr Projekt (LB03)

Für Ihr Projekt ersetzen Sie posts durch Ihre eigenen Tabellen (z.B. serie, actor, serie_actor):

Ressourcen-Route: z.B. /api/serien
CRUD: GET, POST, PUT, DELETE
Zusätzlich:

Last update:
2026/01/12
07:43

modul:m290_guko:learningunits:lu17:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lu17/theorie/a_intro

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

mindestens eine JOIN-Route (z.B. Serien inkl. Schauspieler:innen)
mindestens eine Aggregat-Route (z.B. Durchschnittsbewertung pro Genre)

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu17/theorie/a_intro

Last update: 2026/01/12 07:43

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu17/theorie/a_intro

	LU17 – CRUD mit Express & MySQL
	Lernziele
	Rückblick auf LU16
	HTTP-Statuscodes
	Vorbereitung: MySQL-Datenbank "social_media"
	Schritt 1: mysql2 installieren
	Schritt 2: connect.js erstellen (DB-Verbindung auslagern)
	Schritt 3: index.js vorbereiten (Express + DB verwenden)
	CRUD-Routen: posts jetzt mit echter MySQL-Tabelle
	READ: alle Posts (GET /api/posts)
	Test in Postman

	READ: einzelner Post (GET /api/posts/:id)
	CREATE: neuen Post erstellen (POST /api/posts)
	Test in Postman

	UPDATE: Post ändern (PUT /api/posts/:id)
	Test in Postman

	DELETE: Post löschen (DELETE /api/posts/:id)
	Test mit Postman

	Typische Fehlerquellen (aus LU16, jetzt noch wichtiger)
	Transfer auf Ihr Projekt (LB03)

