2026/02/03 12:14 1/14 LU17 - CRUD mit Express & MySQL

LU17 - CRUD mit Express & MySQL

Lernziele

¢ Sie kdnnen Ilhre MySQL-Datenbank aus einem Express-Server heraus ansprechen.

¢ Sie konnen die CRUD-Routen aus LU16 (GET, POST, PUT, DELETE) so erweitern, dass sie mit
einer echten Tabelle posts arbeiten.

e Sie setzen einfache Validierung ein (Pflichtfelder prifen).

* Sie verwenden passende HTTP-Statuscodes (200, 201, 400, 404, 500).

¢ Sie testen alle Operationen mit Postman.

Ruckblick auf LU16

In LU16 haben Sie eine API fur Social-Media-Posts gebaut - aber noch ohne Datenbank:

e Daten waren in einer JavaScript-Liste posts gespeichert (In-Memory).
e lhre Routen waren z.B.:

o GET /api/posts

o GET /api/posts/:id

o POST /api/posts

In LU17 ersetzen Sie diese In-Memory-Liste durch eine echte Datenbank:

e Die Daten kommen aus der MySQL-Tabelle posts.
e |hr Express-Server ist die Brucke zwischen Client (Postman) und Datenbank.
e Die gleiche Idee bleibt: HTTP-Anfrage - Route - Logik/SQL -» HTTP-Antwort.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:
2026/01/12 modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro
07:43

Client (Frontend)

REQUEST
GET /POST / PUT / DELETE

localhost:3000 Iapijfoodll

Gast Kellner:in Kiiche Lager
INSERT INTO /

' UPDATE SET
/——.L
L 4

&

SELECT \ /
Browser / Server Logik Datenbank |
Postman /

Applikation

HTTP-Statuscodes

Wenn Sie mit Postman testen, sehen Sie immer einen Statuscode. Dieser Code ist Ihr , Kurzfazit“, ob
der Request geklappt hat.

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/client_server_http_req_response_kitchen.png

2026/02/03 12:14

3/14

LU17 - CRUD mit Express & MySQL

®

100-199

HTTP-STATUSCODES

Dreistellige Codes in HTTP-Antworten, die zeigen, was mit der Anfrage passiert ist.
Die Statuscodes werden vom Server zuriick an den Client gesendet.

)

]
=

200-299 300-399 400-499 500-599
INFORMATIONAL SUCCESS REDIRECTION CLIENT ERRORS SERVER ERRORS
[INFORMATION) (ERFOLG) [WEITERLEITUNG) (CLIENT-FEHLER) (SERVER-FEHLER)
BEDEUTUNG: BEDEUTUNG: BEDEUTUNG: BEDEUTUNG:
Anfrage erhalten — esgeht Anfrage erfolgreich. fers hin (neue Froblem mit der Anfrage Server kann eine giltige
weiter / Protokellwechsel. ufart). (clientseitig). Anfrage nicht verarbeiten,
+ 100 Continue «200 0K +300 Multiple Choices «400 Bad Request « 500 Internal Server Error
sende den Rest der Anfrage Anfrage erfolgreich mehrere Optionen fehlerhafte Anfrage / interner Serverfehler
verfiighar ungilltige Daten
=101 Switching Protocols +201 Created =501 Mot Implemented
Wechsel zu elnem anderen neue Ressource erstellt =301 Moved Permanently =401 Unauthorized nicht implementiert
Protokoll permanente Weiterleitung nicht authentifiziert
+202 Accepted (Link aktualisieren) »502 Bad Gateway
=103 Early Hints angenommen; +402 Payment Required ungiiltige Antwort vom
Ladehinweise vor der Verarbeitung spater +302 Found reserviert [selten genutzt Upstream
finalen Antwort tempordre Weiterleitung
+204 No Content +403 Forbidden «503 Service Unavailable
Erfolg; kein Response-Body +303 See Other Zugriff verboten iiberlastet/ Wartung
Weiterleitung; Abruf per
+205 Reset Content GET =404 Not Found =504 Gateway Timeout
Erfolg; Seite/Formular Ressource nicht gefunden Upstream-Timeout
zuriicksetzen +307 Temporary Redirect
temporire Weiterleitung; +405 Method Not Allowed +505 HTTP Version Not
Methode/Body beibehalten Methode hier nicht erlaubt Supported
HTTP-Version nicht
+308 Permanent Redirect +408 Request Timeout unterstiitzt
permanent Weiterleitung; Anfrage dauerte zu lange
Methode/Body beibehalten
=410 Gone
dauerhaft entfernt
+429 Too Many Requests
Rate-Limit (zu viele
Anfragen)
p o 4
. . Typischer
Situation Bedeutung
Statuscode

GET)

Erfolgreich Daten gelesen (z.B.

200

OK (Daten kommen zurtick)

Erfolgreich Datensatz erstellt
(POST)

201

Created (Neuer Datensatz
wurde erstellt)

Erfolgreich aktualisiert (PUT)

200

OK (Update hat geklappt)

Erfolgreich gel6scht (DELETE)

200

OK (Léschen hat geklappt; Sie
kénnen zur Kontrolle z.B. das
geléschte Objekt oder eine
Message zurlickgeben)

Pflichtfelder fehlen / ungiltige
Eingabe

400

Bad Request (Client hat
falsche/fehlende Daten
geschickt)

ID existiert nicht

404

Not Found (Datensatz wurde
nicht gefunden)

Datenbank-/Serverfehler

500

Internal Server Error (Problem

auf Server/DB-Seite)

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:
2026/01/12
07:43

Vorbereitung: MySQL-Datenbank "social media"

modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro

FUr die Verbindung mit MySQL bendtigen wir eine bestehende Datenbank. Wir arbeiten mit der
Datenbank ,social_media“, welche die Tabellen users und posts beinhaltet.

Laden Sie hier den SQL-Dump herunter und lassen Sie das
. Skript in Webstorm laufen via Run SQL Script... (eine
Anleitung, wie das prinzipiell geht finden Sie in LUQ9).

SQL-Dump einer fiktiven Social-Media-Datenbank

Das ERD der Datenbank sieht so aus:

post
user
PK INTEGER
PK | id INTEGER \{ d
- FK | user_id INTEGER
first_name VARCHAR(100)
title VARCHAR(255)
last_name VARCHAR(100)
) image_url VARCHAR(512)
email VARCHAR(255)
i description TEXT
birthday DATE
o likes INTEGER
profile_img_url VARCHAR(512)

Eine mogliche Tabellenstruktur fur die Tabelle , posts*:

Spalte Datentyp Beschreibung

id INT, PRIMARY KEY, AUTO INCREMENT |Primarschlussel

user id INT Referenz auf User (FK)
title VARCHAR(255) Titel des Posts
image url |VARCHAR(512) Bild-URL
description|TEXT Beschreibung

likes INT Anzahl Likes

/|\ Achtung: Die Primar-Spalte heisst neu id und nicht mehr
* post id wiein LU16.

Schritt 1: mysql2 installieren

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu17/theorie/social_media_db-dump.sql.zip
https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu17/theorie/social_media_db-dump.sql.zip
https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu17/theorie/social_media_crowsfoot_ids_updated.drawio.png

2026/02/03 12:14 5/14 LU17 - CRUD mit Express & MySQL

Damit Node.js mit MySQL sprechen kann, verwenden wir mysql2.

npm install mysql2

Schritt 2: connect.js erstellen (DB-Verbindung auslagern)

Damit index. js Ubersichtlich bleibt, erstellen Sie eine eigene Datei connect. js. Diese Datei
erstellt eine Verbindung und exportiert sie, damit Sie sie in Ihren Routes mit db.query (..)
verwenden konnen.

import mysql from 'mysql2’

// Hinweis: Verwenden Sie hier Ihren AppUser (nicht root).
// Port 3306 ist der Standard-Port fiur MySQL auf localhost.
db = mysqgl.createConnection

host: 'localhost'

user: ‘'app _user'

password: 'YOUR PASSWORD HERE'

port: 3306

database: 'social media’

// connect() offnet die Verbindung und gibt bei
Erfolg/Fehler eine Meldung aus.
db.connect((err
err
console.error('DB-Verbindung fehlgeschlagen:', err

console.log('Mit MySQL verbunden'

export db

Was passiert hier?

e db ist die offene Verbindung und kann in index. js importiert werden (z.B. import { db }
from , ./connect.js";).
¢ |In der LBO3 sollen Sie nicht als root arbeiten » verwenden Sie einen AppUser.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:
2026/01/12 modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro

07:43

Schritt 3: index.js vorbereiten (Express + DB verwenden)

Sie bauen auf dem Setup aus LU16 auf:

e app.use(express.json()) bleibt wichtig (fir req.body).

e Sie importieren db aus connect. js. Die Verbindung wird in connect. js bereits aufgebaut
(db.connect(..)).

* Loschen Sie die Test-Tabelle aus LU16 let posts = [{ post id: 1, .. }1;

import express from 'express'
import db } from './connect.js'

app express
port

app.use(express.json

// Test-Route: schnell prifen, ob der Server lauft
app. A req, res
res.send('API mit Datenbank ist online'

// Optional: kleine Test-Route fir DB (zeigt Serverzeit aus
MySQL)
app. '/api/db-test' req, res

db.query('SELECT NOW() AS server time' err, results

err
console.error('DB-Fehler bei /api/db-test:', err
res.status .send('DB-Test fehlgeschlagen'
res.status .json(results

// Server starten
app.listen(port
console.log(API lauft auf http://localhost:${port});

Was passiert hier?

e db kommt aus connect. js und ist die MySQL-Verbindung.

e |hre Routen kdnnen direkt db.query(..) verwenden.

e Mit /api/db-test prifen Sie schnell, ob die DB erreichbar ist (Status 200 + JSON), ohne
schon CRUD zu programmieren.

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

2026/02/03 12:14 7/14 LU17 - CRUD mit Express & MySQL

Server starten Nicht alle Lernenden haben nodemon installiert. Beides ist moglich:

node index.js

oder (falls Sie ein dev-Script mit nodemon haben):

npm run dev

CRUD-Routen: posts jetzt mit echter MySQL-Tabelle

Ab hier ersetzen Sie die In-Memory-Liste aus LU16 durch SQL.

Konvention: Wir bleiben wie in LU16 bei /api/posts (statt nur /posts), damit
Ihre API klar erkennbar ist.

READ: alle Posts (GET /api/posts)

// READ — alle Posts aus der DB
// Route: GET http://localhost:3000/api/posts
app. '/api/posts’ req, res

// SQL-Abfrage: alle Spalten, die wir zurlckgeben méchten
sql = °

SELECT id, user id, title, image url, description, likes
FROM posts

// db.query(...) fuhrt die SQL-Abfrage aus
db.query(sqgl err, results

// Falls die DB einen Fehler liefert -> 500
err
console.error('DB-Fehler bei GET /api/posts:', err
res.status(500).send('Serverfehler bei der
Post-Abfrage'

// results ist ein Array mit Zeilen (Rows)

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:

2026/01/12 modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro
07:43

res.status(200).json(results

Test in Postman

e Methode: GET
e URL: http://localhost:3000/api/posts
e Erwartung: 200 + JSON-Liste

READ: einzelner Post (GET /api/posts/:id)

// READ — einzelner Post nach ID aus der DB
// Route: GET http://localhost:3000/api/posts/1
app. ‘/api/posts/:id’ req, res

// Route-Parameter :id kommt immer als String ->
Number(...) macht eine Zahl daraus
id Number(req.params.id

// Einfache Validierung: ist id uberhaupt eine Zahl?
Number.isNaN(id
res.status(400).send('Unglltige ID (muss eine
Zahl sein)'

AN

sql
SELECT id, user id, title, image url, description, likes
FROM posts
WHERE id

// Platzhalter ? wird durch id ersetzt -> Schutz vor SOL-
Injection
db.query(sql id err, results

err
console.error('DB-Fehler bei GET /api/posts/:id:'
err

res.status(500).send('Serverfehler bei der
Post-Abfrage'

// Wenn keine Zeile gefunden -> 404
results. length 0

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

2026/02/03 12:14 9/14 LU17 - CRUD mit Express & MySQL

res.status(404).send('Post nicht gefunden'

// results[0Q] ist der erste (und hier einzige) Treffer
res.status(200).json(results[0

CREATE: neuen Post erstellen (POST /api/posts)

// CREATE — neuen Post in der DB anlegen
// Route: POST http://localhost:3000/api/posts
app.post('/api/posts’ req, res

// Daten kommen aus dem Request-Body (Postman: Body -> raw
-> JSON)
user id req.body.user id
title req.body.title
image url req.body.image url
description req.body.description

// Validierung: Pflichtfelder
user id undefined user id null title
undefined title null title Y
res.status(400).send('Bitte mindestens user id
und title angeben.'

AN

sql
INSERT INTO posts (user_id, title, image url
description, likes
VALUES 0

values
user id
title
image url t
description !

// INSERT ausfihren
db.query(sql, values, (err, result

err
console.error('DB-Fehler bei POST /api/posts:', err
res.status(500).send('Serverfehler beim

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:
2026/01/12 modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro

07:43

Erstellen des Posts'

// insertId kommt von MySQL AUTO INCREMENT
newPost

id: result.insertId
user_id: user id
title: title
image url: image url
description: description
likes

res.status .json(newPost

Test in Postman

Test-Body (Postman - Body - raw - JSON)

{
"user_id": 1,
“title": "Neuer DB-Post",
"image url": "https://example.com/post.jpg",
"description”: "Dieser Post wurde in MySQL gespeichert."
}

UPDATE: Post andern (PUT /api/posts/:id)

In LU16b haben Sie einen Post so aktualisiert: Der ganze Datensatz wird ersetzt, wenn wir ein Update
machen. Genau diese Logik Ubernehmen wir jetzt - der Unterschied ist nur: statt im Array andern wir
jetzt die MySQL-Tabelle posts.

// UPDATE — Post vollstandig ersetzen (PUT)
// Route: PUT http://localhost:3000/api/posts/1
app.put('/api/posts/:id" req, res

id Number(req.params.id

Number.isNaN(id

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

2026/02/03 12:14 11/14 LU17 - CRUD mit Express & MySQL

res.status(400).send('Ungliltige ID (muss eine
Zahl sein)'

// Alle Felder werden erwartet (PUT ersetzt alles)
user_id req.body.user id
title req.body.title
image url req.body.image url
description req.body.description
likes req.body. likes

// Validierung: fehlen Felder?
// likes kann O sein -> deshalb auf undefined priifen

user id undefined
title undefined

image url undefined
description undefined
likes undefined

res.status(400).send('Bitte user id, title,
image url, description und likes mitsenden (PUT ersetzt
alles).'

sql
UPDATE posts
SET user id title image url description
likes
WHERE id

values user id, title, image url, description
likes, id

db.query(sql, values, (err, result
err
console.error('DB-Fehler bei PUT /api/posts/:id:'
err
res.status(500).send('Serverfehler beim
Aktualisieren des Posts'

result.affectedRows 0
res.status(404).send('Post nicht gefunden

// 200 OK + das "neue" 0Objekt zurickgeben
res.status(200).json

id: id

user id: user id

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:
2026/01/12 modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro
07:43

title: title

image url: image url
description: description
likes: likes

Test in Postman

Test-Body
{
"user id": 1,
"title": "Titel (replaced)",
"image url": "https://example.com/new.jpg",
"description”: "Dieser Post wurde komplett ersetzt.",
"likes": 5
}
Erwartung:

e Status 200 OK
* JSON-Objekt des aktualisierten Posts (inkl. neuem title und likes)

DELETE: Post loschen (DELETE /api/posts/:id)

// DELETE — Post ldschen
app. ‘/api/posts/:id’ req, res

id = Number(req.params.id
Number.isNaN(id
res.status .send('Ungultige ID (muss eine
Zahl sein)'
sql 'DELETE FROM posts WHERE id = ?'
db.query(sql id err, result

err
console.error('DB-Fehler bei DELETE /api/posts/:id:'

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

2026/02/03 12:14 13/14 LU17 - CRUD mit Express & MySQL

err
res.status .send('Serverfehler beim Loschen
des Posts'

result.affectedRows
res.status .send('Post nicht gefunden'

// Antwort: 200 + Message
res.status .json message: Post mit id=${id} wurde
geloscht.”

Test mit Postman

e Methode: DELETE
e URL: http://localhost:3000/api/posts/1

Erwartung:

e Status 200 OK
¢ JSON-Objekt des geloschten Posts
e Danach GET /api/posts/1 - 404 Not Found

Typische Fehlerquellen (aus LU16, jetzt noch wichtiger)

e req.params.id ist immer ein String -» mit Number(..) umwandeln (und Number.isNaN(...)
prufen).
e Ohne app.use(express.json()) ist req.body leer.
e SQL immer mit Platzhaltern ? schreiben (Prepared Statements).
» Denken Sie bei db.query(..) immer an die drei Falle:
o Eingaben ok? - sonst 400
o Datensatz gefunden? - sonst 404 (results.length === 0 oder affectedRows ===
0)
o DB-Fehler? - 500

Transfer auf lhr Projekt (LB03)

Fur Ihr Projekt ersetzen Sie posts durch Ihre eigenen Tabellen (z.B. serie, actor, serie_actor):

e Ressourcen-Route: z.B. /api/serien
e CRUD: GET, POST, PUT, DELETE
e Zusatzlich:

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:
2026/01/12 modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro

07:43

o mindestens eine JOIN-Route (z.B. Serien inkl. Schauspieler:innen)
o mindestens eine Aggregat-Route (z.B. Durchschnittsbewertung pro Genre)

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro

Last update: 2026/01/12 07:43

https://wiki.bzz.ch/ Printed on 2026/02/03 12:14

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu17/theorie/a_intro

	LU17 – CRUD mit Express & MySQL
	Lernziele
	Rückblick auf LU16
	HTTP-Statuscodes
	Vorbereitung: MySQL-Datenbank "social_media"
	Schritt 1: mysql2 installieren
	Schritt 2: connect.js erstellen (DB-Verbindung auslagern)
	Schritt 3: index.js vorbereiten (Express + DB verwenden)
	CRUD-Routen: posts jetzt mit echter MySQL-Tabelle
	READ: alle Posts (GET /api/posts)
	Test in Postman

	READ: einzelner Post (GET /api/posts/:id)
	CREATE: neuen Post erstellen (POST /api/posts)
	Test in Postman

	UPDATE: Post ändern (PUT /api/posts/:id)
	Test in Postman

	DELETE: Post löschen (DELETE /api/posts/:id)
	Test mit Postman

	Typische Fehlerquellen (aus LU16, jetzt noch wichtiger)
	Transfer auf Ihr Projekt (LB03)

