2026/02/03 17:48 1/12 LU17 - CRUD mit Express & MySQL

LU17 - CRUD mit Express & MySQL

Lernziele

¢ Sie kdnnen Ilhre MySQL-Datenbank aus einem Express-Server heraus ansprechen.

¢ Sie konnen die CRUD-Routen aus LU16 (GET, POST, PUT, DELETE) so erweitern, dass sie mit
einer echten Tabelle post arbeiten.

e Sie setzen einfache Validierung ein (Pflichtfelder prifen).

* Sie verwenden passende HTTP-Statuscodes (200, 201, 400, 404, 500).

¢ Sie testen alle Operationen mit Postman.

Ruckblick auf LU16

In LU16 haben Sie eine API fur Social-Media-Posts gebaut - aber noch ohne Datenbank:

e Daten waren in einer JavaScript-Liste posts gespeichert (In-Memory).
e lhre Routen waren z.B.:

o GET /api/posts

o GET /api/posts/:id

o POST /api/posts

In LU17 ersetzen Sie diese In-Memory-Liste durch eine echte Datenbank:

e Die Daten kommen aus der MySQL-Tabelle post.
e |hr Express-Server ist die Brucke zwischen Client (Postman) und Datenbank.
e Die gleiche Idee bleibt: HTTP-Anfrage - Route - Logik/SQL -» HTTP-Antwort.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;gg;ﬁz 12 M0dul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_gukoflearningunits/lul7/theoriefa_intro?rev=1766759478
15:31
Client (Frontend)
REQUEST
GET /POST / PUT / DELETE
localhost:3000 [apijfoodll
Gast Kellner:in Kliche Lager
INSERT INTO /
A ' UPDATE SET
—— — [
!!" DELETE
a0 [Tl
* ,-—\
N Aud
SELECT \ |/
Browser / API Server Logik Datenbank
Postman /
Applikation
HTTP-Statuscodes

Wenn Sie mit Postman testen, sehen Sie immer einen Statuscode. Dieser Code ist Ihr , Kurzfazit”, ob
der Request geklappt hat.

https://wiki.bzz.ch/ Printed on 2026/02/03 17:48

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/client_server_http_req_response_kitchen.png

2026/02/03 17:48

3/12

LU17 - CRUD mit Express & MySQL

®

HTTP-STATUSCODES

Dreistellige Codes in HTTP-Antworten, die zeigen, was mit der Anfrage passiert ist.
Die Statuscodes werden vom Server zuriick an den Client gesendet.

)

]
=

o——

100-199 200-299 300-399 400-499 500-599
INFORMATIONAL SUCCESS REDIRECTION CLIENT ERRORS SERVER ERRORS
[INFORMATION) (ERFOLG) [WEITERLEITUNG) (CLIENT-FEHLER) (SERVER-FEHLER)
BEDEUTUNG: BEDEUTUNG: BEDEUTUNG: BEDEUTUNG: BEDEUTUNG:
Anfrage erhalten — esgeht Anfrage erfolgreich. Du musst woanders hin (neue Froblem mit der Anfrage Server kann eine giltige
weiter / Protokellwechsel. URL ufart). (clientseitig). Anfrage nicht verarbeiten,
+ 100 Continue «200 0K +300 Multiple Choices «400 Bad Request « 500 Internal Server Error
sende den Rest der Anfrage Anfrage erfolgreich mehrere Optionen fehlerhafte Anfrage / interner Serverfehler
verfiighar ungilltige Daten
=+ 101 Switching Protocols +201 Created =501 Mot Implemented
Wechsel zu elnem anderen neue Ressource erstellt =301 Moved Permanently =401 Unauthorized nicht implementiert
Protokoll permanente Weiterleitung nicht authentifiziert
+202 Accepted (Link aktualisieren) »502 Bad Gateway
=103 Early Hints angenommen; +402 Payment Required ungiiltige Antwort vom
Ladehinweise vor der Verarbeitung spater +302 Found reserviert [selten genutzt Upstream
finalen Antwort tempordre Weiterleitung
+204 No Content +403 Forbidden +503 Service Unavailable
Erfolg; kein Response-Body +303 See Other Zugriff verboten iiberlastet/ Wartung
Weiterleitung; Abruf per
+205 Reset Content GET =404 Not Found =504 Gateway Timeout
Erfolg; Seite/Formular Ressource nicht gefunden Upstream-Timeout
zuriicksetzen +307 Temporary Redirect
temporire Weiterleitung; +405 Method Not Allowed +505 HTTP Version Not
Methode/Body beibehalten Methode hier nicht erlaubt Supported
HTTP-Version nicht
+308 Permanent Redirect +408 Request Timeout unterstiitzt
permanent Weiterleitung; Anfrage dauerte zu lange
Methode/Body beibehalten
=410 Gone
dauerhaft entfernt
+429 Too Many Requests
Rate-Limit (zu viele
Anfragen)
h A 4
. . Typischer
Situation Bedeutung
Statuscode

GET)

Erfolgreich Daten gelesen (z.B.

200

OK (Daten kommen zurtick)

(POST)

Erfolgreich Datensatz erstellt

201

Created (Neuer Datensatz

wurde erstellt)

Erfolgreich aktualisiert (PUT)

200

OK (Update hat geklappt)

Erfolgreich gel6scht (DELETE)

200

OK (Léschen hat geklappt; Sie
kénnen zur Kontrolle z.B. das
geléschte Objekt oder eine
Message zurlickgeben)

Eingabe

Pflichtfelder fehlen / ungiltige

400

Bad Request (Client hat
falsche/fehlende Daten

geschickt)

ID existiert nicht

404

Not Found (Datensatz wurde

nicht gefunden)

Datenbank-/Serverfehler

500

Internal Server Error (Problem

auf Server/DB-Seite)

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;83;;?%/26 modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro?rev=1766759478

15:31

Vorbereitung: MySQL-Tabelle post

Eine mdgliche Tabellenstruktur (vereinfacht):

Spalte Datentyp Beschreibung

post id INT, PRIMARY KEY, AUTO_INCREMENT |Primarschlussel

user id INT Referenz auf User (FK)
title VARCHAR(255) Titel des Posts
image url |VARCHAR(512) Bild-URL
description|TEXT Beschreibung

likes INT Anzahl Likes

Diese Tabelle legen Sie mit einem SQL-DDL-Skript an (wie bisher im Modul). Importieren Sie zusatzlich
Startdaten (DML), damit Sie direkt testen kénnen.

Schritt 1: mysql2 installieren

Damit Node.js mit MySQL sprechen kann, verwenden wir mysql2.

npm install mysql2

Schritt 2: connect.js erstellen (DB-Verbindung auslagern)

Damit index. js Ubersichtlich bleibt, erstellen Sie eine eigene Datei connect. js. Diese Datei
erstellt eine Verbindung und exportiert sie, damit Sie sie in Ihren Routes mit db.query(..)
verwenden konnen.

import mysql from 'mysql2’

// Hinweis: Verwenden Sie hier Ihren AppUser (nicht root).
// Port 3306 ist der Standard-Port fiur MySQL auf localhost.
db = mysqgl.createConnection

host: 'localhost'

user: ‘'app_user’

password: 'YOUR PASSWORD HERE'

port: 3306

database: 'social media’

https://wiki.bzz.ch/ Printed on 2026/02/03 17:48

2026/02/03 17:48 5/12 LU17 - CRUD mit Express & MySQL

// connect() oOffnet die Verbindung und gibt bei
Erfolg/Fehler eine Meldung aus.
db.connect((err
err
console.error('DB-Verbindung fehlgeschlagen:', err

console.log('Mit MySQL verbunden'

export { db

Was passiert hier?

e db ist die offene Verbindung und kann in index. js importiert werden (z.B. import { db }
from , ./connect.js”;).
e In der LBO3 sollen Sie nicht als root arbeiten -» verwenden Sie einen AppUser.

Schritt 3: index.js vorbereiten (Express + DB verwenden)

Sie bauen auf dem Setup aus LU16 auf:

e app.use(express.json()) bleibt wichtig (fir req.body).

e Sie importieren db aus connect. js. Die Verbindung wird in connect. js bereits aufgebaut
(db.connect(..)).

e Loschen Sie die Test-Tabelle aus LU16 let posts = [{ post id: 1, .. }1;

import express from 'express'
import db from './connect.js'

app = express
port 3000

app.use(express.json

// Test-Route: schnell prufen, ob der Server lauft
app. /' req, res
res.send('API mit Datenbank ist online'

// Optional: kleine Test-Route fur DB (zeigt Serverzeit aus
MySQL)
app. ‘/api/db-test’ req, res

db.query('SELECT NOW() AS server time' err, results

err

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

update: modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro?rev=1766759478

2025/12/26
15:31
console.error('DB-Fehler bei /api/db-test:', err
res.status .send('DB-Test fehlgeschlagen'
res.status .json(results

// Server starten
app.listen(port
console.log(API lauft auf http://localhost:${port});

Was passiert hier?

e db kommt aus connect. js und ist die MySQL-Verbindung.

e lhre Routen konnen direkt db.query(..) verwenden.

e Mit /api/db-test prufen Sie schnell, ob die DB erreichbar ist (Status 200 + JSON), ohne
schon CRUD zu programmieren.

Server starten Nicht alle Lernenden haben nodemon installiert. Beides ist moglich:

node index.js

oder (falls Sie ein dev-Script mit nodemon haben):

npm run dev

CRUD-Routen: posts jetzt mit echter MySQL-Tabelle

Ab hier ersetzen Sie die In-Memory-Liste aus LU16 durch SQL.

Konvention: Wir bleiben wie in LU16 bei /api/posts (statt nur /posts), damit
Ihre API klar erkennbar ist.

READ: alle Posts (GET /api/posts)

https://wiki.bzz.ch/ Printed on 2026/02/03 17:48

2026/02/03 17:48 7/12 LU17 - CRUD mit Express & MySQL

// READ — alle Posts aus der DB
// Route: GET http://localhost:3000/api/posts
app.get('/api/posts', (req, res) => {

// SQL-Abfrage: alle Spalten, die wir zurlckgeben méchten
const sql = °
SELECT post id, user id, title, image url, description,
likes
FROM post

’

// db.query(...) fuhrt die SQL-Abfrage aus
db.query(sql, (err, results) == {

// Falls die DB einen Fehler liefert -> 500
if (err) {
console.error('DB-Fehler bei GET /api/posts:', err);
return res.status(500).send('Serverfehler bei der
Post-Abfrage');
}

// results ist ein Array mit Zeilen (Rows)
res.status(200).json(results);

});
});

Test in Postman

e Methode: GET
e URL: http://1localhost:3000/api/posts
e Erwartung: 200 + JSON-Liste

READ: einzelner Post (GET /api/posts/:id)

// READ — einzelner Post nach ID aus der DB
// Route: GET http://localhost:3000/api/posts/1
app.get('/api/posts/:id', (req, res) => {

// Route-Parameter :id kommt immer als String ->
Number(...) macht eine Zahl daraus
const id = Number(req.params.id);

// Einfache Validierung: ist id Uberhaupt eine Zahl?
if (Number.isNaN(id)) {
return res.status(400).send('Ungiltige ID (muss eine
Zahl sein)');
}

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2025/12/26
15:31

modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro?rev=1766759478

sql
SELECT post id, user id, title, image url, description
likes
FROM post
WHERE post id

// Platzhalter ? wird durch id ersetzt -> Schutz vor SQL-
Injection
db.query(sql id err, results

err
console.error('DB-Fehler bei GET /api/posts/:id:'
err
res.status(500).send('Serverfehler bei der
Post-Abfrage'

// Wenn keine Zeile gefunden -> 404
results. length 0
res.status(404).send('Post nicht gefunden’

// results[0O] ist der erste (und hier einzige) Treffer
res.status(200).json(results|[0

CREATE: neuen Post erstellen (POST /api/posts)

// CREATE — neuen Post in der DB anlegen
// Route: POST http://localhost:3000/api/posts
app.post('/api/posts' req, res

// Daten kommen aus dem Request-Body (Postman: Body -> raw
-> JSON)
user id req.body.user id
title req.body.title
image url req.body.image url
description req.body.description

// Validierung: Pflichtfelder
user_ id undefined user id null title
undefined title null title e
res.status(400).send('Bitte mindestens user_ id
und title angeben.'

https://wiki.bzz.ch/ Printed on 2026/02/03 17:48

2026/02/03 17:48 9/12 LU17 - CRUD mit Express & MySQL

AN

sql
INSERT INTO post (user_id, title, image url
description, likes
VALUES

AN

values
user id
title
image url
description

// INSERT ausfiihren
db.query(sql, values, (err, result

err
console.error('DB-Fehler bei POST /api/posts:', err
res.status .send('Serverfehler beim
Erstellen des Posts'

// insertId kommt von MySQL AUTO INCREMENT

newPost
post id: result.insertId
user id
title

image url: image url
description: description
likes

res.status .json(newPost

Test-Body (Postman -» Body - raw - JSON)

{
"user id": 1,
"title": "Neuer DB-Post",
"image url": "https://example.com/post.jpg",
"description”: "Dieser Post wurde in MySQL gespeichert."
}

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2025/12/26
15:31

UPDATE: Post andern (PUT /api/posts/:id)

modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro?rev=1766759478

Hier Ubernehmen Sie die Idee aus LU16 (Update) - aber jetzt mit SQL UPDATE.

// UPDATE — Post vollstandig ersetzen (PUT)
app.put('/api/posts/:id" req, res
id = Number(req.params.id
Number.isNaN(id
res.status(400).send('Unglltige ID (muss eine
Zahl sein)'

// Alle Felder werden erwartet
user id req.body.user id
title req.body.title
image url req.body.image url
description req.body.description
likes req.body. likes

// Validierung: alle Pflichtfelder vorhanden?

user id undefined title undefined
image url undefined description undefined
likes undefined

res.status(400).send('Bitte user id, title,
image url, description und likes mitsenden (PUT ersetzt

alles).'
sql = UPDATE post SET user id title
image url description likes WHERE post id
values user id, title, image url, description
likes, id

db.query(sqgl, values err, result
err
console.error('DB-Fehler bei PUT /api/posts/:id:'
err
res.status(500).send('Serverfehler beim
Aktualisieren des Posts'

result.affectedRows 0
res.status(404).send('Post nicht gefunden'

https://wiki.bzz.ch/ Printed on 2026/02/03 17:48

2026/02/03 17:48 11/12 LU17 - CRUD mit Express & MySQL

// Update hat geklappt: Status 200 + das "neue" 0Objekt
zuruckgeben
res.status(200).json
post id: id
user id
title
image url
description
likes

DELETE: Post loschen (DELETE /api/posts/:id)

// DELETE — Post ldschen
// Route: DELETE http://localhost:3000/api/posts/1
app. ‘/api/posts/:id’ req, res
id = Number(req.params.id
Number.isNaN(id
res.status(400).send('Ungiltige ID (muss eine
Zahl sein)'

sql 'DELETE FROM post WHERE post id = ?'

db.query(sql id err, result

err
console.error('DB-Fehler bei DELETE /api/posts/:id:'
err
res.status(500).send('Serverfehler beim Loschen
des Posts'

result.affectedRows 0
res.status(404).send('Post nicht gefunden'

// Statuscode: 200 + Message
res.status(200).json({ message: “Post mit post id=${id
wurde geloscht.’

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2025/12/26
15:31

modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro?rev=1766759478

Typische Fehlerquellen (aus LU16, jetzt noch wichtiger)

req.params.id ist immer ein String =» mit Number (..) umwandeln (und Number.isNaN(..)
prufen).
Ohne app.use(express.json()) ist req.body leer.
SQL immer mit Platzhaltern ? schreiben (Prepared Statements).
Denken Sie bei db.query(..) immer an die drei Falle:
o Eingaben ok? - sonst 400
o Datensatz gefunden? - sonst 404 (results.length === 0 oder affectedRows ===
0)
o DB-Fehler? - 500

Transfer auf lhr Projekt (LBO3)

Far Ihr Projekt ersetzen Sie post durch lIhre eigenen Tabellen (z.B. serie, actor, serie actor):

e Ressourcen-Route: z.B. /api/serien
e CRUD: GET, POST, PUT, DELETE
e Zusatzlich:
o mindestens eine JOIN-Route (z.B. Serien inkl. Schauspieler:innen)
o mindestens eine Aggregat-Route (z.B. Durchschnittsbewertung pro Genre)

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro?rev=1766759478

Last update: 2025/12/26 15:31

https://wiki.bzz.ch/ Printed on 2026/02/03 17:48

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu17/theorie/a_intro?rev=1766759478

	LU17 – CRUD mit Express & MySQL
	Lernziele
	Rückblick auf LU16
	HTTP-Statuscodes
	Vorbereitung: MySQL-Tabelle post
	Schritt 1: mysql2 installieren
	Schritt 2: connect.js erstellen (DB-Verbindung auslagern)
	Schritt 3: index.js vorbereiten (Express + DB verwenden)
	CRUD-Routen: posts jetzt mit echter MySQL-Tabelle
	READ: alle Posts (GET /api/posts)
	READ: einzelner Post (GET /api/posts/:id)
	CREATE: neuen Post erstellen (POST /api/posts)
	UPDATE: Post ändern (PUT /api/posts/:id)
	DELETE: Post löschen (DELETE /api/posts/:id)

	Typische Fehlerquellen (aus LU16, jetzt noch wichtiger)
	Transfer auf Ihr Projekt (LB03)

