2026/02/03 17:49 1/15 LU17 - CRUD mit Express & MySQL

LU17 - CRUD mit Express & MySQL

Lernziele

¢ Sie kdnnen Ilhre MySQL-Datenbank aus einem Express-Server heraus ansprechen.

¢ Sie konnen die CRUD-Routen aus LU16 (GET, POST, PUT, DELETE) so erweitern, dass sie mit
einer echten Tabelle post arbeiten.

e Sie setzen einfache Validierung ein (Pflichtfelder prifen).

* Sie verwenden passende HTTP-Statuscodes (200, 201, 400, 404, 500).

¢ Sie testen alle Operationen mit Postman.

Ruckblick auf LU16

In LU16 haben Sie eine API fur Social-Media-Posts gebaut - aber noch ohne Datenbank:

e Daten waren in einer JavaScript-Liste posts gespeichert (In-Memory).
e lhre Routen waren z.B.:

o GET /api/posts

o GET /api/posts/:id

o POST /api/posts

In LU17 ersetzen Sie diese In-Memory-Liste durch eine echte Datenbank:

e Die Daten kommen aus der MySQL-Tabelle post.
e |hr Express-Server ist die Brucke zwischen Client (Postman) und Datenbank.
e Die gleiche Idee bleibt: HTTP-Anfrage - Route - Logik/SQL -» HTTP-Antwort.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;ggg}gl 02 M0dul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_gukoflearningunits/lul7/theoriefa_intro?rev=1767389435
22:30
Client (Frontend)
REQUEST
GET /POST / PUT / DELETE
localhost:3000 [apijfoodll
Gast Kellner:in Kliche Lager
INSERT INTO /
A ' UPDATE SET
—— — [
!'!'! DELETE
a0 [Tl
b ,-—\
N Aud
SELECT \ |/
Browser / API Server Logik Datenbank
Postman /
Applikation
HTTP-Statuscodes

Wenn Sie mit Postman testen, sehen Sie immer einen Statuscode. Dieser Code ist Ihr , Kurzfazit”, ob
der Request geklappt hat.

https://wiki.bzz.ch/ Printed on 2026/02/03 17:49

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu16/theorie/client_server_http_req_response_kitchen.png

2026/02/03 17:49

3/15

LU17 - CRUD mit Express & MySQL

®

HTTP-STATUSCODES

Dreistellige Codes in HTTP-Antworten, die zeigen, was mit der Anfrage passiert ist.
Die Statuscodes werden vom Server zuriick an den Client gesendet.

)

]
=

o——

100-199 200-299 300-399 400-499 500-599
INFORMATIONAL SUCCESS REDIRECTION CLIENT ERRORS SERVER ERRORS
[INFORMATION) (ERFOLG) [WEITERLEITUNG) (CLIENT-FEHLER) (SERVER-FEHLER)
BEDEUTUNG: BEDEUTUNG: BEDEUTUNG: BEDEUTUNG: BEDEUTUNG:
Anfrage erhalten — esgeht Anfrage erfolgreich. Du musst woanders hin (neue Froblem mit der Anfrage Server kann eine giltige
weiter / Protokellwechsel. URL ufart). (clientseitig). Anfrage nicht verarbeiten,
+ 100 Continue «200 0K +300 Multiple Choices «400 Bad Request « 500 Internal Server Error
sende den Rest der Anfrage Anfrage erfolgreich mehrere Optionen fehlerhafte Anfrage / interner Serverfehler
verfiighar ungilltige Daten
=+ 101 Switching Protocols +201 Created =501 Mot Implemented
Wechsel zu elnem anderen neue Ressource erstellt =301 Moved Permanently =401 Unauthorized nicht implementiert
Protokoll permanente Weiterleitung nicht authentifiziert
+202 Accepted (Link aktualisieren) »502 Bad Gateway
=103 Early Hints angenommen; +402 Payment Required ungiiltige Antwort vom
Ladehinweise vor der Verarbeitung spater +302 Found reserviert [selten genutzt Upstream
finalen Antwort tempordre Weiterleitung
+204 No Content +403 Forbidden +503 Service Unavailable
Erfolg; kein Response-Body +303 See Other Zugriff verboten iiberlastet/ Wartung
Weiterleitung; Abruf per
+205 Reset Content GET =404 Not Found =504 Gateway Timeout
Erfolg; Seite/Formular Ressource nicht gefunden Upstream-Timeout
zuriicksetzen +307 Temporary Redirect
temporire Weiterleitung; +405 Method Not Allowed +505 HTTP Version Not
Methode/Body beibehalten Methode hier nicht erlaubt Supported
HTTP-Version nicht
+308 Permanent Redirect +408 Request Timeout unterstiitzt
permanent Weiterleitung; Anfrage dauerte zu lange
Methode/Body beibehalten
=410 Gone
dauerhaft entfernt
+429 Too Many Requests
Rate-Limit (zu viele
Anfragen)
h A 4
. . Typischer
Situation Bedeutung
Statuscode

GET)

Erfolgreich Daten gelesen (z.B.

200

OK (Daten kommen zurtick)

(POST)

Erfolgreich Datensatz erstellt

201

Created (Neuer Datensatz

wurde erstellt)

Erfolgreich aktualisiert (PUT)

200

OK (Update hat geklappt)

Erfolgreich gel6scht (DELETE)

200

OK (Léschen hat geklappt; Sie
kénnen zur Kontrolle z.B. das
geléschte Objekt oder eine
Message zurlickgeben)

Eingabe

Pflichtfelder fehlen / ungiltige

400

Bad Request (Client hat
falsche/fehlende Daten

geschickt)

ID existiert nicht

404

Not Found (Datensatz wurde

nicht gefunden)

Datenbank-/Serverfehler

500

Internal Server Error (Problem

auf Server/DB-Seite)

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2026/01/02
22:30

Vorbereitung: MySQL-Datenbank "social media"“

modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro?rev=1767389435

FUr die Verbindung mit MySQL benoétigen wir eine bestehende Datenbank. Wir arbeiten mit der
Datenbank ,social_ media“, welche die Tabellen users und posts beinhaltet.

Laden Sie hier den SQL-Dump herunter und lassen Sie das
' Skript in Webstorm laufen via Run SQL Script... (eine
~ Anleitung, wie das prinzipiell geht finden Sie in LU09).

SQL-Dump einer fiktiven Social-Media-Datenbank

Das ERD der Datenbank sieht so aus:

post
user
PK INTEGER
PK | id INTEGER \ -
FK | user_id INTEGER
first_name VARCHAR({100)
title VARCHAR(255)
last_name VARCHAR(100)
) image_url VARCHAR(512)
email VARCHAR(255)
. description TEXT
birthday DATE
o likes INTEGER
profile_img_url VARCHAR(512)

Eine mdgliche Tabellenstruktur fur die Tabelle ,posts*:

Spalte Datentyp Beschreibung

id INT, PRIMARY KEY, AUTO_INCREMENT|Primarschlissel
user_id INT Referenz auf User (FK)
title VARCHAR(255) Titel des Posts
image url |VARCHAR(512) Bild-URL
description TEXT Beschreibung

likes INT Anzahl Likes

i|i Achtung: Die Primar-Spalte heisst neu id und nicht mehr

post id wie in LU16.

https://wiki.bzz.ch/

Printed on 2026/02/03 17:49

https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu17/theorie/social_media_db-dump.sql.zip
https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu17/theorie/social_media_db-dump.sql.zip
https://wiki.bzz.ch/_media/modul/m290_guko/learningunits/lu17/theorie/social_media_crowsfoot_ids_updated.drawio.png

2026/02/03 17:49 5/15 LU17 - CRUD mit Express & MySQL

Schritt 1: mysql2 installieren

Damit Node.js mit MySQL sprechen kann, verwenden wir mysql2.

npm install mysql2

Schritt 2: connect.js erstellen (DB-Verbindung auslagern)

Damit index. js Ubersichtlich bleibt, erstellen Sie eine eigene Datei connect. js. Diese Datei
erstellt eine Verbindung und exportiert sie, damit Sie sie in lhren Routes mit db.query (..)
verwenden konnen.

import mysql from 'mysql2’

// Hinweis: Verwenden Sie hier Ihren AppUser (nicht root).
// Port 3306 ist der Standard-Port fiur MySQL auf localhost.
db = mysql.createConnection

host: 'localhost'

user: ‘'app user'

password: 'YOUR PASSWORD HERE'

port

database: 'social media'’

// connect() offnet die Verbindung und gibt bei
Erfolg/Fehler eine Meldung aus.
db.connect((err
err
console.error('DB-Verbindung fehlgeschlagen:', err

console.log('Mit MySQL verbunden'

export db

Was passiert hier?

e db ist die offene Verbindung und kann in index. js importiert werden (z.B. import { db }
from , ./connect.js";).
¢ |In der LBO3 sollen Sie nicht als root arbeiten » verwenden Sie einen AppUser.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;832;8:1/02 modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro?rev=1767389435

22:30

Schritt 3: index.js vorbereiten (Express + DB verwenden)

Sie bauen auf dem Setup aus LU16 auf:

e app.use(express.json()) bleibt wichtig (fir req.body).
e Sie importieren db aus connect. js. Die Verbindung wird in connect. js bereits aufgebaut

(db.connect(..)).
e Loschen Sie die Test-Tabelle aus LU16 let posts = [{ post id: 1, .. }1;

import express from 'express'
import db } from './connect.js'

app = express
port

app.use(express.json

// Test-Route: schnell prifen, ob der Server lauft
app. /! req, res
res.send('API mit Datenbank ist online'

// Optional: kleine Test-Route fur DB (zeigt Serverzeit aus
MySQL)
app. ‘/api/db-test’ req, res

db.query('SELECT NOW() AS server time' err, results

err
console.error('DB-Fehler bei /api/db-test:', err
res.status .send('DB-Test fehlgeschlagen'
res.status .json(results

// Server starten
app.listen(port
console.log(API lauft auf http://localhost:${port});

Was passiert hier?

e db kommt aus connect. js und ist die MySQL-Verbindung.

¢ |hre Routen kénnen direkt db.query(..) verwenden.

e Mit /api/db-test prufen Sie schnell, ob die DB erreichbar ist (Status 200 + JSON), ohne
schon CRUD zu programmieren.

https://wiki.bzz.ch/ Printed on 2026/02/03 17:49

2026/02/03 17:49 7/15 LU17 - CRUD mit Express & MySQL

Server starten Nicht alle Lernenden haben nodemon installiert. Beides ist moglich:

node index.js

oder (falls Sie ein dev-Script mit nodemon haben):

npm run dev

CRUD-Routen: posts jetzt mit echter MySQL-Tabelle

Ab hier ersetzen Sie die In-Memory-Liste aus LU16 durch SQL.

Konvention: Wir bleiben wie in LU16 bei /api/posts (statt nur /posts), damit
Ihre API klar erkennbar ist.

READ: alle Posts (GET /api/posts)

// READ — alle Posts aus der DB
// Route: GET http://localhost:3000/api/posts
app. '/api/posts’ req, res

// SQL-Abfrage: alle Spalten, die wir zurlckgeben méchten
sql = °

SELECT id, user id, title, image url, description, likes
FROM posts

// db.query(...) fuhrt die SQL-Abfrage aus
db.query(sqgl err, results

// Falls die DB einen Fehler liefert -> 500
err
console.error('DB-Fehler bei GET /api/posts:', err
res.status(500).send('Serverfehler bei der
Post-Abfrage'

// results ist ein Array mit Zeilen (Rows)

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;832;8:1/02 modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro?rev=1767389435

22:30

res.status(200).json(results

Test in Postman

e Methode: GET
e URL: http://localhost:3000/api/posts
e Erwartung: 200 + JSON-Liste

READ: einzelner Post (GET /api/posts/:id)

// READ — einzelner Post nach ID aus der DB
// Route: GET http://localhost:3000/api/posts/1
app.get('/api/posts/:id' req, res

// Route-Parameter :id kommt immer als String ->
Number(...) macht eine Zahl daraus
const id = Number(req.params.id

// Einfache Validierung: ist id uberhaupt eine Zahl?
if (Number.isNaN(id
return res.status(400).send('Ungultige ID (muss eine
Zahl sein)'

const sql
SELECT id, user id, title, image url, description, likes
FROM posts
WHERE id

// Platzhalter ? wird durch id ersetzt -> Schutz vor SQL-
Injection
db.query(sql, [id err, results

if (err
console.error('DB-Fehler bei GET /api/posts/:id:'
err
return res.status(500).send('Serverfehler bei der
Post-Abfrage'

// Wenn keine Zeile gefunden -> 404
1t (results.length 0
return res.status(404).send('Post nicht gefunden’

https://wiki.bzz.ch/ Printed on 2026/02/03 17:49

2026/02/03 17:49 9/15 LU17 - CRUD mit Express & MySQL

// results[0Q] ist der erste (und hier einzige) Treffer
res.status(200).json(results[0

CREATE: neuen Post erstellen (POST /api/posts)

// CREATE — neuen Post in der DB anlegen
// Route: POST http://localhost:3000/api/posts
app.post('/api/posts' req, res

// Daten kommen aus dem Request-Body (Postman: Body -> raw
-> JSON)
user_id req.body.user id
title req.body.title
image url req.body.image url
description req.body.description

// Validierung: Pflichtfelder
user id undefined user_id null title
undefined title null title t
res.status(400).send('Bitte mindestens user_ id
und title angeben.'

sql
INSERT INTO posts (user_id, title, image url
description, likes
VALUES 0

values
user id
title
image url
description

// INSERT ausfihren
db.query(sql, values, (err, result

err
console.error('DB-Fehler bei POST /api/posts:', err
res.status(500).send('Serverfehler beim
Erstellen des Posts'

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2026/01/02
22:30

modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro?rev=1767389435

// insertId kommt von MySQL AUTO INCREMENT

newPost
id: result.insertId
user id
title
image url: image url
description: description
likes: 0

res.status(201).json(newPost

Test-Body (Postman - Body - raw - JSON)

"user_id": 1,
"title": "Neuer DB-Post",

"image url": "https://example.com/post.jpg",

"description”: "Dieser Post wurde in MySQL gespeichert.”

UPDATE: Post andern (PUT /api/posts/:id)

In LU16b haben Sie einen Post so aktualisiert: Nur die Felder, die im Body wirklich mitgeschickt
werden, werden geandert. Genau diese Logik Ubernehmen wir jetzt - der Unterschied ist nur: statt im
Array andern wir jetzt die MySQL-Tabelle posts.

// UPDATE — vorhandenen Post teilweise aktualisieren (wie 1in

LU16Db)
// Route: PUT http://localhost:3000/api/posts/1

app.put('/api/posts/:id' req

// 1) ID aus der URL lesen (Route-Parameter)

// ID prifen: muss eine Zahl sein
Number.isNaN(id

id = Number(req.params.id

https://wiki.bzz.ch/

Printed on 2026/02/03 17:49

2026/02/03 17:49 11/15 LU17 - CRUD mit Express & MySQL

res.status(400).send('Ungiltige ID (muss eine Zahl
sein)'

// 2) Mogliche neue Werte aus dem Request-Body lesen
// (Postman: Body -> raw -> JSON)

user id req.body.user id

title req.body.title

image url req.body.image url

description req.body.description

likes req.body. likes

// 3) Validierung: mindestens ein Feld muss vorhanden sein
// Wichtig: likes kann 0 sein -> deshalb prifen wir auf
undefined (nicht auf "falsy")

user id undefined
title undefined

image url undefined
description undefined
likes undefined

res.status(400).send('Bitte mindestens ein Feld zum
Aktualisieren mitsenden.'

// 4) SQL-UPDATE dynamisch zusammenbauen:
// Nur Felder, die wirklich im Body vorhanden sind, kommen
in das SET.

setParts

values

user id undefined
setParts.push('user id = ?'
values.push(user id

title undefined
setParts.push('title = ?'
values.push(title

image url undefined
setParts.push('image url = ?'
values.push(image url

description undefined
setParts.push('description = 7'
values.push(description

likes undefined
setParts.push('likes = 7'
values.push(likes

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2026/01/02
22:30

modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro?rev=1767389435

// 1d gehért ans Ende -> wird im WHERE eingesetzt
values.push(id

const sql UPDATE posts SET ${setParts.join(', ' WHERE id

// 5) UPDATE ausfihren
db.query(sql, values, (err, result

// DB-Fehler -> 500
it (err
console.error('DB-Fehler bei PUT /api/posts/:id:', err
return res.status(500).send('Serverfehler beim
Aktualisieren des Posts'

// affectedRows = 0 -> es gab keinen Post mit dieser ID
if (result.affectedRows 0
return res.status(404).send('Post nicht gefunden'

// 6) Lernfreundlich: aktualisierten Datensatz nochmals
holen und zuriickgeben
// Damit der Client (Postman) das "neue" Objekt direkt
sieht.
const selectSql

SELECT id, user id, title, image url, description, likes

FROM posts
WHERE id
db.query(selectSql id err2, rows
1t (err2
console.error('DB-Fehler beim SELECT nach UPDATE:'
err2

return res.status(500).send('Serverfehler beim Laden des
aktualisierten Posts'

res.status(200).json(rows[0

https://wiki.bzz.ch/ Printed on 2026/02/03 17:49

2026/02/03 17:49 13/15 LU17 - CRUD mit Express & MySQL

Test mit Postman (PUT)

Methode: PUT

URL: http://localhost:3000/api/posts/1
Body -» raw —» JSON

Beispiel-Body:

{

"title": "Sunset Vibes (updated)",
"likes": 0

}

Erwartung:
Status 200 OK
JSON-Objekt des aktualisierten Posts (inkl. neuem title und likes)

DELETE-Section ersetzen durch diese Version

DELETE: Post loschen (DELETE /api/posts/:id)

In LU16b haben Sie beim Loschen den geldschten Post zurickgegeben (zur Kontrolle). Das machen
wir hier genauso - nur mit MySQL:

zuerst den Post mit SELECT holen,

dann mit DELETE loschen,

dann den vorher geholten Post zurtckgeben.

// DELETE — Post loschen (wie in LUl6b: geloschtes Objekt
zuruckgeben)
// Route: DELETE http://localhost:3000/api/posts/1

app. ‘/api/posts/:id’ req, res
id Number(req.params.id
Number.isNaN(id

res.status(400).send('Ungultige ID (muss eine Zahl
sein)'

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;832;8:1/02 modul:m290_guko:learningunits:lul7:theorie:a_intro https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro?rev=1767389435

22:30

// 1) Post zuerst holen (damit wir ihn nach dem Léschen
zuruckgeben koénnen)

selectSql = SELECT id, user id, title, image url
description, likes FROM posts WHERE id

db.query(selectSql id err, rows
err
console.error('DB-Fehler bei SELECT vor DELETE:', err

res.status(500).send('Serverfehler beim LOoschen des
Posts'

rows . length 0
res.status(404).send('Post nicht gefunden'
deletedPost rows |0

// 2) Jetzt loschen
deleteSql 'DELETE FROM posts WHERE id = ?'

db.query(deleteSql id err2, result

err2
console.error('DB-Fehler bei DELETE /api/posts/:id:'
err2
res.status(500).send('Serverfehler beim Ldéschen
des Posts'

// 3) Lernfreundlich: 200 + geldschtes Objekt (wie LU16Db)
res.status(200).json(deletedPost

Test mit Postman (DELETE)

Methode: DELETE

URL: http://localhost:3000/api/posts/1
Erwartung:

Status 200 0K

https://wiki.bzz.ch/ Printed on 2026/02/03 17:49

2026/02/03 17:49 15/15 LU17 - CRUD mit Express & MySQL

JSON-Objekt des geldschten Posts

Danach GET /api/posts/1 - 404 Not Found

Typische Fehlerquellen (aus LU16, jetzt noch wichtiger)

e req.params.id ist immer ein String -» mit Number(..) umwandeln (und Number.isNaN(...)
prufen).
e Ohne app.use(express.json()) ist req.body leer.
e SQL immer mit Platzhaltern ? schreiben (Prepared Statements).
e Denken Sie bei db.query(..) immer an die drei Falle:
o Eingaben ok? - sonst 400
o Datensatz gefunden? - sonst 404 (results.length === 0 oder affectedRows ===
0)
o DB-Fehler? - 500

Transfer auf lhr Projekt (LBO3)

Far Ihr Projekt ersetzen Sie post durch Ihre eigenen Tabellen (z.B. serie, actor, serie actor):

e Ressourcen-Route: z.B. /api/serien
e CRUD: GET, POST, PUT, DELETE
e Zusatzlich:
o mindestens eine JOIN-Route (z.B. Serien inkl. Schauspieler:innen)
o mindestens eine Aggregat-Route (z.B. Durchschnittsbewertung pro Genre)

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m290_guko/learningunits/lul7/theorie/a_intro?rev=1767389435

Last update: 2026/01/02 22:30

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m290_guko/learningunits/lu17/theorie/a_intro?rev=1767389435

	LU17 – CRUD mit Express & MySQL
	Lernziele
	Rückblick auf LU16
	HTTP-Statuscodes
	Vorbereitung: MySQL-Datenbank "social_media"
	Schritt 1: mysql2 installieren
	Schritt 2: connect.js erstellen (DB-Verbindung auslagern)
	Schritt 3: index.js vorbereiten (Express + DB verwenden)
	CRUD-Routen: posts jetzt mit echter MySQL-Tabelle
	READ: alle Posts (GET /api/posts)
	READ: einzelner Post (GET /api/posts/:id)
	CREATE: neuen Post erstellen (POST /api/posts)
	UPDATE: Post ändern (PUT /api/posts/:id)
	DELETE: Post löschen (DELETE /api/posts/:id)

	Typische Fehlerquellen (aus LU16, jetzt noch wichtiger)
	Transfer auf Ihr Projekt (LB03)

