2026/02/03 22:57 1/9 90. Python-Exceptions (alt)

90. Python-Exceptions (alt)

Inhalt

e Ausnahmen versus Syntaxfehler

e Der try...except Block: Umgang mit Ausnahmen
e Die else Klausel

e Aufraumen nach der finally Verwendung

e Auslosen einer Ausnahme

e Bedingungen sicherstellen

e Zusammenfassung

Ein Python-Programm wird beendet, sobald es auf einen Fehler stdsst. In Python kann ein Fehler ein
Syntaxfehler oder eine Ausnahme sein. In diesem Artikel erfahren Sie, was eine Ausnahme ist und wie
sie sich von einem Syntaxfehler unterscheidet. Danach erfahren Sie, wie Sie Ausnahmen auslésen und
Zusicherungen aufstellen. Dann werden Sie mit einer Demonstration des try. . .except Blocks
abschliessen.

try
assert except
raise else
finally

Ausnahmen versus Syntaxfehler

Syntaxfehler treten auf, wenn der Parser eine falsche Anweisung erkennt. Beachten Sie folgendes
Beispiel:

>>> print(0 / 0))
File "<stdin>", line 1
print(0 / 0))

N

SyntaxError: invalid syntax

Der Pfeil zeigt an, wo der Parser auf den Syntaxfehler gestossen ist. In diesem Beispiel war eine
Klammer zu viel. Entfernen Sie diese und fuhren Sie Ihren Code erneut aus:

>>> print(0 / 0)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

Dieses Mal ist ein Ausnahmefehler aufgetreten. Dieser Fehlertyp tritt immer dann auf, wenn

BZZ - Modulwiki - https://wiki.bzz.ch/

https://realpython.com/invalid-syntax-python/

Last update:
2024/03/28 modul:m320:learningunits:lu03:theorie:lu4-kapitel_2 https://wiki.bzz.ch/modul/m320/learningunits/lu03/theorie/lu4-kapitel_2

14:07

syntaktisch korrekter Python-Code zu einem Fehler fuhrt. Die letzte Zeile der Meldung gibt an, auf
welche Art von Ausnahmefehler Sie gestossen sind.

Anders als beim Syntaxfehler gibt Python an, welche Art von Ausnahmefehler aufgetreten ist. In
diesem Fall war es ein ZeroDivisionError. Python verflgt Uber verschiedene eingebaute
Ausnahmen sowie die Mdglichkeit, selbst definierte Ausnahmen zu erstellen.

Der try...except Block: Umgang mit Ausnahmen

Der try...except Block in Python wird zum Abfangen und Behandeln von Ausnahmen

verwendet. Python fuhrt Code nach der try Anweisung als ,normalen” Teil des Programms aus. Der
Code, der der except Anweisung folgt, ist die Antwort des Programms auf alle Ausnahmen in der
vorhergehenden try Klausel.

try:
T S ™\
| Run this code |
_ X
except:

! Execute this code when ‘\l
\ there is an exception /

Wie Sie bereits gesehen haben, gibt Python einen Ausnahmefehler aus, wenn syntaktisch korrekter
Code auf einen Fehler stosst. Dieser Ausnahmefehler fuhrt zum Absturz des Programms, wenn er
nicht behandelt wird. Die except Klausel bestimmt, wie Ihr Programm auf Ausnahmen reagiert.

Die folgende Funktion kann lhnen helfen, den try. . .except Block zu verstehen:

process orders(quantity: int

quantity 100:
hier wird ein Fehler erkannt und das passende Fehlerobjekt - im

Beispiel ProcessingError - erzeugt
ProcessingError("Not enough orders to start processing."

'Processing orders.'

Die Funktion process orders() kann nur erfolgreich mit Werten grésser oder gleich 100
ausgefuhrt werden. Andernfalls I10st raise in dieser Funktion eine ProcessingError Exception aus.

Mit try kdnnen Sie dennoch einen Versuch wagen, die Funktion aufzurufen:

process orders (99

https://wiki.bzz.ch/ Printed on 2026/02/03 22:57

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html

2026/02/03 22:57 3/9 90. Python-Exceptions (alt)

Der Fehler wird hier mit pass behandelt. Wenn Sie diesen Code ausfuhren wirden, erhalten Sie die
folgende Ausgabe:

Nichts. Das Gute dabei ist, dass das Programm nicht abgestlrzt ist. Aber es ware schén zu sehen, ob
bei der Ausfuhrung lhres Codes eine Ausnahme aufgetreten ist. Zu diesem Zweck kénnen Sie pass
wie folgt durch die Ausgabe einer Nachricht ersetzen:

.process_orders
"Function was not executed'
Flhren Sie diesen Code aus:
Function was not executed

Wenn in einem Programm, das diese Funktion ausfuhrt, eine Ausnahme auftritt, wird das Programm
fortfahren und Sie dartber informieren, dass der Funktionsaufruf nicht erfolgreich war.

Was Sie nicht gesehen haben, war die Art des Fehlers, der als Ergebnis des Funktionsaufrufs
ausgeldst wurde. Um genau zu sehen, was schief gelaufen ist, mussten Sie den Fehler abfangen, den
die Funktion ausgeldst hat.

Der folgende Code ist ein Beispiel, in dem Sie die Nachricht aus dem ProcessingError extrahieren
und auf dem Bildschirm ausgeben:

process orders
ProcessingError error:
error
"Function was not executed'

Folgendes wird ausgegeben:

Not enough orders to start processing.
Function was not executed

Die erste Meldung ist der ProcessingError. Die zweite Meldung gibt an, dass die Funktion nicht
ausgefuhrt wurde.

Im vorherigen Beispiel haben Sie eine selbst geschriebene Funktion aufgerufen. Als Sie die Funktion
ausgefuhrt haben, haben Sie die ProcessingError Ausnahme abgefangen und auf dem Bildschirm
ausgegeben.

Hier ist ein weiteres Beispiel, in dem Sie eine Datei 6ffnen und dabei auf Exceptions prufen:

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:
2024/03/28 modul:m320:learningunits:lu03:theorie:lu4-kapitel_2 https://wiki.bzz.ch/modul/m320/learningunits/lu03/theorie/lu4-kapitel_2
14:07

open('file.log"’ file:
read data = file.read

‘Could not open file.log'
Wenn file.log nicht vorhanden ist, gibt dieser Codeblock folgendes aus:
Could not open file.log
Dies ist eine informative Nachricht, und unser Programm wird weiterhin ausgefuhrt. In der Python-
Dokumentation kénnen Sie sehen, dass Python viele sog. Built-in Exceptions anbietet, die Sie

verwenden konnen. Eine auf dieser Seite beschriebene Ausnahme ist diese:

Ausnahme FileNotFoundError

Wird ausgeldst, wenn eine Datei oder ein Verzeichnis angefordert wird, aber nicht vorhanden
ist. Entspricht errno ENOENT.

Um diese Art von Ausnahme abzufangen und auf dem Bildschirm auszugeben, kénnen Sie den
folgenden Code verwenden:

open('file.log"’ file:
read data = file.read
FileNotFoundError fnf _error:
fnf _error

Wenn in diesem Fall file.log nicht vorhanden ist, lautet die Ausgabe wie folgt:
[Errno 2] No such file or directory: 'file.log'

Sie konnen mehr als einen Funktionsaufruf in Threr try Klausel haben und sollten damit rechnen,
verschiedene Ausnahmen abzufangen. Hier ist zu beachten, dass der Code in der try Klausel beendet
wird, sobald eine Ausnahme auftritt.

Warnung: Catching Exception verbirgt alle Fehler ... auch die vollig unerwarteten. Aus
diesem Grund sollten Sie in Ihren Python-Programmen allgemeine Uberpriifungen auf
Exception vermeiden und stattdessen spezifische Ausnahmeklassen verwenden,

die Sie einzeln abfangen und behandeln. In diesem Tutorial erfahren Sie mehr daruber,
warum dies eine gute ldee ist.

L] \
-

Hier sind die wichtigsten Erkenntnisse:

e Eine try Klausel wird bis zu dem Punkt ausgefuhrt, an dem die erste Ausnahme auftritt.
e Innerhalb der except Klausel bestimmen Sie, wie das Programm auf die Ausnahme reagiert.
e Dabei kdnnen Sie verschiedene Ausnahmen prifen und jeweils anders darauf reagieren, so wie

https://wiki.bzz.ch/ Printed on 2026/02/03 22:57

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://realpython.com/the-most-diabolical-python-antipattern/

2026/02/03 22:57 5/9 90. Python-Exceptions (alt)

es erforderlich ist.
e Verwenden Sie keine leeren except Blocke und benennen Sie die erwarteten und behandelten
Ausnahmen konkret!

Die else Klausel

In Python kdnnen Sie mit der else-Anweisung ein Programm anweisen, einen bestimmten Codeblock
nur ohne Ausnahmen auszufuhren.

try:
o~ - - - --"—-"-"—"""-""-= T
/ . i1
| Run this code |
it !
e e . e e e e — — — — — — -
except:
P __ _______ et
lf Execute this code when ‘~|
\ there is an exception /
M o e e e o o — — — — — — -
else:
o~ - - - == o N =
/" No exceptions? Run this "
\ code. /
S -

Sehen Sie sich das folgende Beispiel an:

process orders
ProcessingError error:
error
'Executing the else clause.'
Wenn Sie diesen Code ausfuhren und kein Fehler auftritt, wirde die Ausgabe wie folgt aussehen:

Doing something. Executing the else clause.

Da das Programm auf keine Ausnahmen gestossen ist, wurde die else Klausel ausgefihrt.

Sie kénnen auch try Code innerhalb der else Klausel ausfihren und dort auch mégliche Ausnahmen
abfangen:

process orders
ProcessingError error:
error

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:
2024/03/28 modul:m320:learningunits:lu03:theorie:lu4-kapitel_2 https://wiki.bzz.ch/modul/m320/learningunits/lu03/theorie/lu4-kapitel_2
14:07

open('file.log' file:
read data = file.read
FileNotFoundError fnf error:
fnf _error

Wenn die Datei nicht gelesen werden kann, wirden Sie das folgende Ergebnis erhalten:

Doing something.
[Errno 2] No such file or directory: 'file.log'

Aus der Ausgabe konnen Sie sehen, dass die process_orders() Funktion ausgefuhrt wurde. Da
keine Ausnahmen aufgetreten sind, wurde versucht, file.log zu 6ffnen. Diese Datei war nicht
vorhanden und, anstatt die Datei zu 6ffnen, haben Sie die FileNotFoundError Ausnahme
abgefangen.

Aufraumen nach der finally Verwendung

Stellen Sie sich vor, Sie mussten nach der Ausfuhrung Ihres Codes immer eine Aktion zum Aufrdumen
implementieren. Python ermdglicht Ihnen dies mit der finally Klausel.

try:
o S "y
| Run this code |
\ r)
except:
o~ - - === -= *x
/' Execute this code when ‘tl
\ there is an exception /
else:
/" No exceptions? Run this
\ code. /
finally:
s ‘ ™\
| Always run this code. |
\ /

Sehen Sie sich das folgende Beispiel an:

process orders

https://wiki.bzz.ch/ Printed on 2026/02/03 22:57

2026/02/03 22:57 7/9 90. Python-Exceptions (alt)

ProcessingError error:
error

open('file.log' file:
read data = file.read
FileNotFoundError fnf_error:
fnf _error
‘Cleaning up, irrespective of any exceptions.'
Die finally Klausel wird immer ausgeflhrt. Dabei spielt es keine Rolle, ob Sie irgendwo in den try
oder else Klauseln auf eine Ausnahme stossen. Das Unter der Annahme, dass beim Verarbeiten der
Bestellungen ein Fehler auftritt, wirde folgendes ausgegeben:

Processing Error occured.
Cleaning up, irrespective of any exceptions.

Auslosen einer Ausnahme

Falls eine bestimmte Bedingung eintritt, kdnnen Sie mit raise eine Ausnahme ausldsen. Die
Anweisung kann durch eine benutzerdefinierte Ausnahme erganzt werden.

raise 4 Exception |

Um einen Fehler zu werfen, konnen Sie folgendes tun:
X
Exception(f"x should not exceed 5. The value of x was: {x}"
Wenn Sie den Code ausfuhren, erhalten Sie folgende Ausgabe:
Traceback (most recent call last):
File "<input>", line 4, in <module>

Exception: x should not exceed 5. The value of x was: 10

Das Programm halt an und prasentiert unsere Ausnahme auf dem Bildschirm, zusammen mit
Hinweisen daruber, was schief gelaufen ist.

Bedingungen sicherstellen

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:
2024/03/28 modul:m320:learningunits:lu03:theorie:lu4-kapitel_2 https://wiki.bzz.ch/modul/m320/learningunits/lu03/theorie/lu4-kapitel_2
14:07

Mit assert stellen Sie sicher, dass eine bestimmte Bedingung erfullt ist. Wenn sich herausstellt, dass
dieser Zustand True ist, dann ist das ausgezeichnet! Das Programm kann fortgesetzt werden. Wenn
sich herausstellt, dass die Bedingung False lautet, wirde eine AssertionError Ausnahme
ausgelost und das Programm beendet.

assert:

Schauen Sie sich das folgende Beispiel an:
X =

#if condition returns False, AssertionError is raised:
X "The value x should be positive."

Wenn Sie diesen Code ausflhren, ist das Ergebnis der Assertion False und angezeigt wird:

Traceback (most recent call last):
File "<input>", line 4, in <module>
assert x >= 0, "The value x should be positive."
AssertionError: The value x should be positive.

In diesem Beispiel ist das Ausldsen einer AssertionError Ausnahme das Letzte, was das Programm
tun wird. Das Programm wird beendet.

Achtung: assert ist in Python dazu gedacht, um wéahrend der Entwicklungsphase
sicherzustellen, dass gewisse Erwartungen erfullt werden (z.B. dass Funktionen
vernunftige Werte zurlickgeben). Dabei ist darauf zu achten, dass ein assert frihzeitig
fehlschlagt (an der Stelle, an der der Fehler erkannt wurde). Daher sind AssertErrors
nicht dazu gedacht, programmgesteuert erfasst oder behandelt zu werden mit
try..except. Am besten verwenden Sie assert Uberhaupt nicht in produktivem Code,
sondern ausschliesslich in Unit Tests []

L] \
-

Zusammenfassung

Nachdem Sie den Unterschied zwischen Syntaxfehlern und Ausnahmen gesehen haben, haben Sie
verschiedene Mdaglichkeiten zum Ausldsen, Abfangen und Behandeln von Ausnahmen in Python
kennengelernt und gesehen wie man die folgenden Schllsselworter verwendet:

https://wiki.bzz.ch/ Printed on 2026/02/03 22:57

2026/02/03 22:57 9/9 90. Python-Exceptions (alt)

e In der try Klausel werden alle Anweisungen ausgeflhrt, bis eine Ausnahme auftritt.

e except wird verwendet, um die in der try-Klausel auftretenden Ausnahmen abzufangen und zu
behandeln.

e else lasst Sie Abschnitte codieren, die nur ausgefuhrt werden sollen, wenn in der try-Klausel
keine Ausnahmen auftreten.

e finally ermdglicht es Ihnen, Codeabschnitte auszufihren, die immer ausgefihrt werden
sollten, mit oder ohne zuvor aufgetretene Ausnahmen.

e raise ermdglicht es lhnen, jederzeit eine Ausnahme auszuldsen.

e Mit assert kdnnen Sie Uberprifen, ob eine bestimmte Bedingung erflllt ist, und mit einer
Ausnahme das Programm beenden, sollte dies nicht der Fall sein. Empfehlung: assert am
besten Uberhaupt nicht im produktiven Code verwenden!

Hoffentlich hat Ihnen dieser Artikel geholfen, die grundlegenden Tools zu verstehen, die Python beim
Umgang mit Ausnahmen zu bieten hat.

Credits: Der Inhalt dieses Artikels wurde grdsstenteils direkt aus dem Englischen Ubernommen und
nur leicht modifiziert. Das Original wurde hauptsachlich von Said van de Klundert verfasst und via
Real Python veroffentlich.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m320/learningunits/lu03/theorie/lu4-kapitel_2

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/

https://realpython.com/team/svdklundert/
https://realpython.com/python-exceptions/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m320/learningunits/lu03/theorie/lu4-kapitel_2

	[90. Python-Exceptions (alt)]
	90. Python-Exceptions (alt)
	Inhalt
	Ausnahmen versus Syntaxfehler
	Der try...except Block: Umgang mit Ausnahmen
	Die else Klausel
	Aufräumen nach der finally Verwendung
	Auslösen einer Ausnahme
	Bedingungen sicherstellen
	Zusammenfassung

