2025/11/20 06:27 1/5 Aufgabe 3 - Schulverwaltung

Aufgabe 3 - Schulverwaltung
Ziel

Sie kdnnen in einer komplexen Anwendung selbstandig

die Klassen erstellen

die Beziehungen einpflegen (einseitig, zweiseitig, mehrfache)
den notigen Ablauf selbst festlegen

die gefordeten Ausgaben erzeugen

Vorgehen

e Studieren Sie jeweils das UML-Diagramm sowie die Anweisungen im Code der zu bearbeitenden
Klasse.

e Halten Sie sich an die Reihenfolge bei der Erstellung der Klassen.

e Testen Sie die jeweilige Klasse, bis alle Test erfolgreich ablaufen.

Auftrag

Es ist eine einfache Schulverwaltung gemass folgendem Klassendiagramm zu implementieren.

Version fir IMS Version fiir API

SchoolClass

- designation : String
- students]] : Student

+ SchoolClass{designation : String)

+ get_designation() : String

+ add_student(student : Student) : void
+get_student{index : ineteger) : Student
+get_size() : integer

+ print_student_list{) : void

+ print_student_report{name : String) : void

20

Student

- name : String
- the class : SchoolClass (=Mone)
- report : ClassReport

+ Student{name : String, report : ClassReport)

+ get_name() : String

+ get_school_class() : SchoolClass

+ set_school_class(school_class : SchoolClass) : void
+ get_report() : ClassReport

+ print_report() : void

ClassReport

- subjects[]: Subject

- student : Student (= None)
+ ClassReport()

+get_size() : integer

SchoolClass

- designation : String
- students[] : Student

+ SchoolClass(designation : String)

+ get_designation() : String

+ add_student(student : Student) : void

+ take_student{index : ineteger) : Student

+ get_size() : integer

+ print_student_list() : void

+ print_student_report{name : String) : void

20

Student

- hame : String
- the_class ; SchoolClass (=None)
- report : ClassReport

+ Student{name : String, report : ClassReport)

+ get_name() : String

_school_class() : SchoolClass

+ set_school_class(school_class : SchoolClass) : void
+ get_report() : ClassReport

+ print_report() : void

Subject

- name : String
- grades(]: Grade

+set_student(student : Student) : void
+get_student() : Student
+add_subject(subject : Subject) : void
+get_subject(index : integer) : Subject
+to_string() : String

+ print_details(} : void

+ Subject{name : String)
+get_name() : String

+ add_grade(grade : Grade) : void
+ get_size(} : inetger
+get_value(index : integer) : float
+get_date(index : integer) : String
+get_average() : float

2.4

Grade

-value: float {1 <= value <=6} (=-1.0)
- date : String (= 'no date')

+ Grade(value : float, date : String)
+ get_value() : float
+ get_date() : String

ClassReport

- subjects[]: Subject
- student : Student (= None)

Subject

+ ClassReport()

+ get_size() : integer

+ set_student(student : Student) : void
+ get_student() : Student

+ add_subject{subject : Subject) : void

+ take_subject(index : integer) : Subject
+ to_string() : String

+ print_details{) : void

- name : 5tring
- grades|[]: Grade

+ Subject{name : String)

+ get_name() : String

+ add_grade(grade : Grade) : void
+ get_size() : inetger

+ take_wvalue(index : integer) : float
+ take_date(index : integer) : String
+ get_average() : float

2.4

Grade

-value: float {1 <=value <=6} [= -1.0)
- date : String (= 'no date')

+ Grade(value : float, date : String)
+ get_value() : float
+ get_date() : String

Dabei nutzen Sie Ihr Wissen zu ein- und zweiseitiger Beziehung sowie den 4 gezeigten Fallen der

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu05/aufgaben/lu03-aufg8-schulverwaltung-1.png?id=modul%3Am320%3Alearningunits%3Alu05%3Aaufgaben%3Alu3-aufgabe_8
https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu05/aufgaben/lu05-aufg3-schulverwaltung-1b.png?id=modul%3Am320%3Alearningunits%3Alu05%3Aaufgaben%3Alu3-aufgabe_8

Last
update:
2024/03/28
14:07

modul:m320:learningunits:lu05:aufgaben:lu3-aufgabe_8 https://wiki.bzz.ch/modul/m320/learningunits/lu05/aufgaben/lu3-aufgabe_8

Referenzzuweisung. Ebenso verwenden Sie Mehrfachbeziehungen.

Ablauf

1. Akzeptieren Sie das Assignment in GitHub Classroom und klonen Sie das Repository.

2. Erstellen Sie die Klasse Grade als @dataclass.
Hinweise:
- Achten Sie auf die Zusicherung fir den Wert von value. Diese nehmen Sie im Konstruktor vor,
d.h. dass Sie keine setter-Methode schreiben (ist gemass Klassendiagramm nicht vorgesehen).
- Initialisieren Sie die Werte value und date gemass Klassendiagramm.

3. Testen Sie die Klasse Grade. (test_grade.py)

4. Implementieren Sie die Klasse Subject.
Hinweise:
- Beachten Sie, dass gemass Klassendiagramm max. 4 Noten méglich sind. Das mUissen Sie
beim Zufiigen von Noten (Grade-Objekte) umsetzen.
- Die untere Grenze von 2 Noten mussen Sie (noch) nicht beachten.
- Die Schreibweise grades[] : Grade im Klassendiagramm deutet auf die Nutzung eines
Array hin.
- Bei den beiden get-Methoden (IMS) bzw. take-Methoden (API) muss sichergestellt sein, dass
ein ungultiger Index zu keinem Laufzeitfehler fahrt. Fir die Note (get value(idx) bzw.
take value(idx)) soll im Fehlerfall der Wert 0 zurtlickgegeben werden. Beim Datum
(get date(idx) bzw. take date(idx)) wird None geliefert.
- Die Methode get average liefert bei fehlendem Noteneintrag (size = 0) den Wert 0 zurdck.
Dieser Test ist zwingend nétig, da sonst eine Division durch 0 zu einem Laufzeitfehler fuhrt.

5. Testen Sie die Klasse Subject. (test subject.py)

6. Implementieren Sie die Klasse ClassReport.
Hinweise:
- Lassen Sie die Methoden set student und get student vorerst weg. Um diese Methode zu
testen, bendétigen Sie zuerst ein Student-Objekt. Die entsprechende Klasse Student existiert
aber noch nicht.
- Beachten Sie, dass gemass Klassendiagramm max. 3 Facher méglich sind. Das missen Sie
beim Zufligen umsetzen
- Stellen Sie immer sicher, dass geprtift wird, ob Subject-Objekte verfugbar sind. Ansonsten
geben Sie den Wert None zurlick.
- Die Methode to string() liefert ein Zeugnis mit allen Fachern und dem entsprechenden
Notenschnitt. Eine mogliche Ausgabe kann wie folgt aussehen:
feugnis fir:

Mathe: 4.25

Deutsch: 5.0

Turnen: 5.0
- Die Methode print details() liefert alle Fachern mit den einzelnen Noten. Eine mégliche
Ausgabe kann wie folgt aussehen:

https://wiki.bzz.ch/ Printed on 2025/11/20 06:27

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu05/aufgaben/lu03_5_-aufg3_biblio-10.png?id=modul%3Am320%3Alearningunits%3Alu05%3Aaufgaben%3Alu3-aufgabe_8

2025/11/20 06:27 3/5 Aufgabe 3 - Schulverwaltung

10.

11.

12.

13.

14,

Hathe
Fach: Mathe mit 2 Noten
1: 4.8 1.1.11
2: 4.5 2.2.22
Schnitt: &.25

Fach: Deutsch mit 3 Noten
1: 4.8 3.3.33
2: 6.0 4.4.44
3: .8 5.5.55
Schnitt: 5.0

Fach: Turnen mit 4 Noten
1: 4.5 b.6.66
2: 5.0 7.7.77
3: b.0 B.8.88
4: 5.5 9.9.99
schnitt: 5.0

. Testen Sie die Klasse ClassReport. (test_classreport.py)

. Erstellen Sie eine main-Methode in classreport.py und geben Sie die to_string-Methode

sowie print details auf dem Bildschirm aus.

Die Ausgabe soll den oben gezeigten Screens entsprechen.

Uberlegen Sie sich, welche Objekte Sie bendtigen und in welcher Reihenfolge diese zu erzeugen
sind, damit die Ausagbe auf den Bildschirm erfolgreich ist.

. Implementieren Sie die Klasse Student. Jetzt ist der Moment gekommen, um in der Klasse

ClassReport die set _student und get student-Methode zu erganzen. (mit der Annotation
@property bzw. @student.setter)

Hinweise:

- Im Konstruktor wird die (eigene) Referenz dem ClassReport-Objekt mitgeteilt.

- Die set-/get-Methoden implementieren Sie auch hier mit den oben erwahnten Annotationen.

Testen Sie die Klasse Student. (test_student.py)

Erstellen Sie eine main-Methode in student.py und fuhren Sie die to string-Methode des
ClassReport-Objektes aus. Dazu mussen natlrlich auch 3 Subject-Objekte und dazu ein paar
Grade-Objekte erzeugt werden. Ebenso ein Student-Objekt, das den print dann auslést.

Implementieren Sie die Klasse SchoolClass.
Hinweise:
- Stellen Sie sicher, dass maximal 20 Student-Objekte zugeflgt werden kénnen.

Testen Sie die Klasse SchoolClass. (test_school _class.py)

Erstellen Sie nun die main-Methode inder Datei main. py.

Hinweise :

- Erzeugen Sie die Objekte in der Reihenfolge, wie sie auch fur die Zuweisung in den
Konstruktoren nétig sind. Wenn Sie unsicher sind, skizzieren Sie sich den Ablauf des Programms
als Sequenzdiagramm auf.

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu05/aufgaben/lu03_5_-aufg3_biblio-11.png?id=modul%3Am320%3Alearningunits%3Alu05%3Aaufgaben%3Alu3-aufgabe_8

Last
update:
2024/03/28
14:07

modul:m320:learningunits:lu05:aufgaben:lu3-aufgabe_8 https://wiki.bzz.ch/modul/m320/learningunits/lu05/aufgaben/lu3-aufgabe_8

- Erzeugen Sie 3 Student-Objekte. Jedes Student-Objekt verweist auf einen Report mit den
Fachern (Subject) und den Noten (Grade).

Ausgabe

Das Programm liefert

e eine Liste der Studenten

e pro Student das Zeugnis (Report) mit dem Notenschnitt

o flir einen Studenten alle Einzelnoten. Sie kénnen hier frei wahlen, fir wen die Noten
ausgegeben werden.

Die Ausgabe soll in etwa wie folgt aussehen:
Hax
Pia
Cem

Zeugnis fir: Max

Mathe: &.25
Deutsch: 5.0
Turnen: 5.8

Zeugnis fir: Pia
Mathe: 5.5
Deutsch: 5.333333333333333
Turnen: 5.25

Zeugnis fir: Cem

Mathe: &.25
Deutsch: 5.5
Turnen: 5.5

Fach: Mathe mit 2 Noten
1: 5.8 1.1.11
2: 3.5 2.2.22
Schnitt: 4.25

Fach: Deutsch mit 3 Noten
1: 5.5 3.3.33
2: 6.8 b4, 44
3: 5.8 5.5.55
Schnitt: 5.5

Fach: Turnen mit 4 MNoten

1: 4.5 6.6.64
2: 6.8 7.7.77
3: 6.8 8.8.88
4: 5.5 9.9.99
Schnitt: 5.5

Dauer

https://wiki.bzz.ch/ Printed on 2025/11/20 06:27

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu05/aufgaben/lu03-aufg8-schulverwaltung-2.png?id=modul%3Am320%3Alearningunits%3Alu05%3Aaufgaben%3Alu3-aufgabe_8

2025/11/20 06:27 5/5 Aufgabe 3 - Schulverwaltung

4 - 6 Stunden

Abgabe

Mittels Push ins GitHub Repository

© René Probst

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m320/learningunits/lu05/aufgaben/lu3-aufgabe_8

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m320/learningunits/lu05/aufgaben/lu3-aufgabe_8

	[Aufgabe 3 - Schulverwaltung]
	[Aufgabe 3 - Schulverwaltung]
	Aufgabe 3 - Schulverwaltung
	Ziel
	Vorgehen
	Auftrag
	Ablauf
	Ausgabe
	Dauer
	Abgabe

