2026/02/03 14:48 1/2 6. Appendix: die hohe Kunst der OOP

6. Appendix: die hohe Kunst der OOP

In den bisherigen Beispielen und Ubungen haben wir immer die naheliegenden Lésungen fiir das
Design von Beziehungen gewahlt. So haben wir z.B. die Spezialisierung von Kunde und Mitarbeiter
als Vererbung einer Oberklasse Person realisiert.

—— .

Abb 6.11: Vereinfachte, naheliegende Vererbungshierarchie

Diese Sichtweise hat aber Nachteile. So kann eine Person nicht gleichzeitig Kunde und Mitarbeiter
sein. Wenn man den Sachverhalt genauer betrachtet, erkennt man auch, dass Kunde und
Mitarbeiter ja nicht wirklich eine Spezialiserungen von Person darstellen, sondern Rollen sind,
die eine Person einnimmt. Dass der vereinfachte Ansatz problematisch ist, fallt dann auf, wenn wir
z.B. eine weiter Spezialisierung wie Lieferant zuflgen.

Eine verbesserte Losung im Sinne guten O0-Designs wurde also wie folgt aussehen:

mm

Abb. 6.12: Optimiertes Design mit einer Klasse Role (Rolle)

Was wollen wir Ihnen damit sagen?

Objektorientierung ist ein weites Feld. Es braucht ganz viel Erfahrung, um alle wichtigen Aspekte zu
kenne und zu nutzen. So haben wir z.B. das Thema der Design-Patterns in keiner Weise
angesprochen. Hier ein kleines Beispiel dazu.

Wenn |hr Programm auf eine Ressource wie z.B. eine Datenbank zugreifen soll, so muss das
~geordnet” erfolgen. Sie kdnnen nicht an x-beliebigen Stellen in lhrem Code DB-Zugriffsobjekte
erzeugen. Das gleiche gilt auch fir Kommunikationsschnitstellen. Wie aber kann man sicherstellen,
dass es von einem Objekt immer nur eine Instanz gibt?

Dazu dient das Design-Pattern des Singleton.

Singleton

Instance : singletor

Singleton()

+ getinstance(] : singletor

Abb. 6.13: Singleton-Pattern

Aber was macht denn dieses Singleton? Ein Singleton fallt vorerst dadurch auf, dass sein
Konstruktor private deklariert ist. Man kann also von ausserhalb der Klasse den Konstruktor gar nicht
aufrufen.

Und wie erzeugt man nun eine Instanz dieser Klasse? Man ruft dazu die statische Methode
getInstance() auf. Diese liefert als Ergebnis die Referenz auf das Singleton-Objekt und zwar immer
ein und dieselbe Referenz.

Schauen wir uns dazu ein Stuck Code an. Wir verwenden die Sprache Java, da sie in vielen Belangen
die OO-spezifischen Gegebenheiten besser implementiert als Python.

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu06/theorie/lu07-abb1.12-appendix-1.png?id=modul%3Am320%3Alearningunits%3Alu06%3Atheorie%3Alu07-kapitel_6
https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu06/theorie/lu07-abb1.13-appendix-1.png?id=modul%3Am320%3Alearningunits%3Alu06%3Atheorie%3Alu07-kapitel_6
https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu06/theorie/lu07-abb1.14-appendix-4.png?id=modul%3Am320%3Alearningunits%3Alu06%3Atheorie%3Alu07-kapitel_6

Last update:
2024/03/28 modul:m320:learningunits:lu06:theorie:lu07-kapitel_6 https://wiki.bzz.ch/modul/m320/learningunits/lu06/theorie/lu07-kapitel_6
14:07

Singleton
Singleton instance

Singleton
// hier folgt eine allfallige Initialisierung von Attributen usw.

/**
Liefert die Referenz auf das Singleton-Objekt.
Das Objekt wird einmalig erzeugt. Bei jedem weiteren Aufruf
wird die schon existierende Referenz geliefert.
**/
Singleton getInstance
instance null
instance Singleton

instance

Benotigt man eine Instanz der Klasse, wird das wie folgt bewerkstelligt.
Singleton aSingleReferenceToWhatEver = Singleton.getInstance

Und dieser Code kann an mehreren Orten einer Applikation implementiert sein. Es wird immer ein und
dieselbe Referenz geliefert. D.h. dass alle Zugriff auf dieses eine Objekt erfolgen werden.

Die Kenntnis und Anwendung von Design-Patterns darf ohne Zweifel als die hohe Schule der OO-
Programmierung bezeichnet werden. Sie haben also nich viel zu lernen.

© René Probst

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m320/learningunits/lu06/theorie/lu07-kapitel_6

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/ Printed on 2026/02/03 14:48

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m320/learningunits/lu06/theorie/lu07-kapitel_6

	[6. Appendix: die hohe Kunst der OOP]
	6. Appendix: die hohe Kunst der OOP

