
2026/02/03 14:26 1/2 Aufgabe 5 - Unit Tests mit Exceptions

BZZ - Modulwiki - https://wiki.bzz.ch/

Aufgabe 5 - Unit Tests mit Exceptions

Ziel

Sie können Testklassen auf der Basis von pytest erstellen und anwenden.

Hinweis

Unit-Tests werden häufig mit agilen Programmierverfahren verwendet, speziell der
testgetrieben Programmierung TDD.

Dabei werden zuerst die Testfälle (Black-Box) festgelegt und dann der dazu nötige
Testcode erstellt.
Erst dann wird die eigentliche Klasse erstellt und laufende gegen die Testklasse geprüft.
Der Code wird solange angepasst, bis alle Tests fehlerfrei absolviert werden (s.a. Theorie,
Kapitel Unit Testing).

Wir verwenden hier den Unit-Test in Bezug auf schon bestehende Klassen.

Auftrag

1. Vorbereiten der Testdatei grade_list_test.py

Erstellen Sie – wenn nicht schon erfolgt – ein Projekt für pytest in PyCharm.
Fügen Sie dem Unit Test eine Funktion testee() hinzu, welche eine GradeList zurück gibt.
Versehen Sie die Funktion mit der Annotation @pytest.fixture.

2. Testen der Methode get_max_grade_count()

Wir prüfen, ob der gelieferte Wert der Grösse der Liste entspricht.
Fügen Sie die Methode test_max_grade_count() hinzu.
Die Methode verwendet das pytest-Schlüsselwort assert zum Vergleichen des gewünschten
mit dem aktuellen Wert.
Prüfen Sie mit assert, ob das Ergebnis vom Aufruf testee.get_max_groesse() mit dem
konstanten Wert 3 übereinstimmt.
Führen Sie den Unit Test aus. Das Ergebnis des Tests wird im linken Teil des Programmfensters
angezeigt.
Wenn Sie alles richtig gemacht haben, finden Sie einen orangen Balken und im unteren Bereich
des Fensters einen Hinweis auf den Fehler.
Ersetzen Sie nun die Zahl durch den konstanten Wert 5.
Speichern Sie die Klasse und führen Sie den Test erneut aus.
Nun muss als Ergebnis ein grüner Balken angezeigt werden.

3. Test der Methode get_current_grade_count()

Wir prüfen, ob die Methode sich in verschiedenen Situationen korrekt verhält.
Zu Beginn muss die Grösse 0 sein, nach dem Zufügen eines Elements muss der Wert 1 sein und
nach zufügen von mehr als 5 Elemente muss der Wert 5 sein.
Es sind hier 3 Testmethoden nötig, um alle diese Fälle sicherzustellen.
Erstellen Sie die 3 Methoden test_list_is_empty(), test_list_is_not_empty() und

Last
update:
2024/03/28
14:07

modul:m320:learningunits:lu90:aufgaben:lu4-aufgabe_5 https://wiki.bzz.ch/modul/m320/learningunits/lu90/aufgaben/lu4-aufgabe_5

https://wiki.bzz.ch/ Printed on 2026/02/03 14:26

test_list_is_full().
Beachten Sie, dass die Methode add_grade() eine Exception wirft, die Sie hier fangen aber
nicht behandeln müssen.

Dies können Sie entweder mit try..except oder besser mit einem Abschnitt with
pytest.raises(…Error): erreichen.
Lesen Sie kurz nach → Assertions about expected exceptions

Führen Sie nun den Test durch und prüfen Sie das Ergebnis.

4. Testen der Methode add_grade()

Wir prüfen eine Methode, die im Fehlerfall eine Exception wirft. Pytest kann auch dieses
Verhalten prüfen.
Erstellen Sie 2 Methoden test_add_valid() und test_add_invalid()
Bei test_add_valid() sollten Sie wiederum das with Statement verwenden.
Führen Sie nun den Test durch und prüfen Sie das Ergebnis.

5. Test der Methode get_grade()

Codieren Sie für die folgenden Testfälle Ihre eigenen Test-Methoden.

Eingabewert Testwert Erwartetes Ergebnis
1 -1 - IndexError wird geworfen
2 0 5.0f 5.0f
3 5 - IndexError wird geworfen

Abgabe

Geben Sie Ihren Code via Moodle ab.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m320/learningunits/lu90/aufgaben/lu4-aufgabe_5

Last update: 2024/03/28 14:07

https://docs.pytest.org/en/7.1.x/how-to/assert.html#assertions-about-expected-exceptions
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m320/learningunits/lu90/aufgaben/lu4-aufgabe_5

	[Aufgabe 5 - Unit Tests mit Exceptions]
	[Aufgabe 5 - Unit Tests mit Exceptions]
	Aufgabe 5 - Unit Tests mit Exceptions
	Ziel
	Hinweis
	Auftrag
	Abgabe

