
2026/02/07 12:55 1/3 LU02.A03 - Klassendiagramm "BankAccount" umsetzen

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02.A03 - Klassendiagramm "BankAccount"
umsetzen

Implementieren Sie das Klassendiagramm als Sourcecode.

Auftrag

Implementieren Sie das Klassendiagramm BankAccount als Python-Code.1.
Orientieren Sie sich für die Umsetzung am Beispiel "Door".
Halten Sie die BZZ Codingstandards für Python ein.2.
Die Aufgabe ist nur dann vollständig gelöst, wenn Sie auch die BZZ-Vorgaben bezüglich «guter
Programmierung» einhalten.

Vorgehen

Beim Lösen der Programmieraufgaben orientieren wir uns am TDD (test driven development). Die
nötigen Testfälle werden durch die Lehrpersonen in Ihrem GitHub Repository bereitgestellt.

Sie finden weiter unten die genauen Anleitung für das jeweilige Vorgehen. Dieses ist bei der
Implementation in allen kommenden Übungen anzuwenden.
Es ist wichtig, dass Sie sich dieses Vorgehen aneignen, da auch die Prüfungen so umgesetzt sind und
die erreichte Note durch die Anzahl korrekter Tests gegeben ist.

Dauer

20 Minuten + Hausaufgabenzeit

Abgabe

Commit und Push auf github

Anleitung zu Klasse BankAccount

Klassendiagramm

https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/klassendiagramm
https://wiki.bzz.ch/howto/codingstandards/start
https://de.ryte.com/wiki/Test_Driven_Development#:~:text=Test%20Driven%20Development%20(deutsch%3A%20testgeleitete,Prozess%20der%20Softwareentwicklung%20zu%20leiten.

Last
update:
2024/08/28
08:58

modul:m320_2024:learningunits:lu02:aufgaben:bankaccount https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/aufgaben/bankaccount

https://wiki.bzz.ch/ Printed on 2026/02/07 12:55

Beschreibung

Die Klasse BankAccount beschreibt ein Bankkonto für einen Kunden (Customer). Das Konto kann
innerhalb eines bestimmten Wertes überzogen werden, d.h. dass auch ein negativer Saldo möglich
ist.

Attribute

balance gibt den aktuellen Kontostand (Saldo) wieder.
overdraft legt fest, um welchen Betrag das Konto überzogen werden darf, d.h. welcher
Minusbetrag möglich ist. (typisch für ein Kreditkonto)
customer ist die Referenz auf ein Objekt der Klasse Customer.

Methoden

__init__(…) (der Konstruktor der Klasse BankAccount) initialisiert den Saldo (balance) auf
0.0 und legt den Überzug (overdraft) sowie den referenzierten Kunden (customer) fest.
balance() liefert den aktuellen Saldo des Kontos (kann auch negativ sein).
overdraft() liefert den max. Betrag, um den das Konto überzogen werden darf.
customer() liefert die Referenz zu einem Customer-Objekt.
booking(…) bucht einen Betrag (amount) ins Konto ein und erhöht somit den Saldo
(balance).
get_money(…) bucht einen Betrag (amount) vom Konto ab. Dabei darf der Betrag max. so
gross sein, dass Saldo + Überzug nicht überschritten werden. Ist der Betrag zu gross, liefert die
Methode den Wert 0.0 zurück (= kein Bezug möglich).

Vorgehen

Implementieren Sie den Konstruktor (__init__(…)) und initialisieren Sie die Attribute gemäss1.
Beschreibung.
Erstellen Sie die getter-Methdode (als @property) für das Attribut balance und testen Sie dies2.
mit der Testmethode test_initial_balance in der Datei test_BankAccount_class.py.
Der Test muss fehlerfrei ausgeführt werden. Pushen Sie ihren Code.

https://wiki.bzz.ch/_detail/modul/m320_2024/learningunits/lu02/aufgaben/uml_bankaccount.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abankaccount

2026/02/07 12:55 3/3 LU02.A03 - Klassendiagramm "BankAccount" umsetzen

BZZ - Modulwiki - https://wiki.bzz.ch/

Erstellen Sie die getter_Methode für das Attribut overdraft und testen Sie diese mit3.
test_initial_overdraft.
Der Test muss fehlerfrei ausgeführt werden. Pushen Sie ihren Code.
Erstellen Sie die getter-Methode für das Attribut customer und testen Sie diese mit4.
test_customer.
Der Test muss fehlerfrei ausgeführt werden. Pushen Sie ihren Code.
Erstellen Sie die Methode booking(…) gemäss der Beschreibung. Testen Sie die Methode mit5.
test_booking.
Der Test muss fehlerfrei ausgeführt werden. Pushen Sie ihren Code.
Erstellen Sie die Methode get_money(…) gemäss der Beschreibung. Achten Sie darauf, wie der6.
angeforderte Betrag bezüglich Saldo (balance) und Überzug (overdraft) geprüft werden
muss.
Testen Sie nun die Methode der Reihe nach mit7.
- test_get_money_available für einen korrekten Bezug.
- test_get_money_not_avaiable für einen nicht gültigen Bezug.
- test_get_money_overdraft für einen Bezug innerhalb der Kredit-Limite.
- test_balance_after_transaction für die Kontrolle des Saldos.
Führen Sie nach jedem der Tests einen commit und push aus!
Führen Sie nun die Testklasse als Ganzes aus.8.
Das Testergebnis muss wie folgt aussehen:

⇒ GitHub Repo für externe Besucher

GitHub Repository https://github.com/templates-python/m320-lu02-a03-bankaccount

Lernende am BZZ müssen den Link zum GitHub Classroom Assignment verwenden

 © René Probst

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/aufgaben/bankaccount

Last update: 2024/08/28 08:58

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bankaccount-gesamttestergebnis.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abankaccount
https://github.com/templates-python/m320-lu02-a03-bankaccount
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/aufgaben/bankaccount

	LU02.A03 - Klassendiagramm "BankAccount" umsetzen
	Auftrag
	Vorgehen
	Dauer
	Abgabe
	Anleitung zu Klasse BankAccount
	Klassendiagramm
	Beschreibung
	Attribute
	Methoden
	Vorgehen

