2026/02/10 07:04 1/6 LU02.A02 - Klassendiagramm "Bottle" umsetzen

LUO2.A02 - Klassendiagramm umsetzen

J
- Implementieren Sie das Klassendiagramm als Sourcecode.

Auftrag

1. Implementieren Sie das Klassendiagramm Bottle als Python-Code.
Orientieren Sie sich fir die Umsetzung am Beispiel "Door".

2. Halten Sie die BZZ Codingstandards fur Python ein.
Die Aufgabe ist nur dann vollstandig geldst, wenn Sie auch die BZZ-Vorgaben bezlglich «guter
Programmierung» einhalten.

Vorgehen

Beim Ldsen der Programmieraufgaben orientieren wir uns am TDD (test driven development). Die
notigen Testfalle werden durch die Lehrpersonen in Ihrem GitHub Repository bereitgestellt.

Sie finden weiter unten die genauen Anleitung fur das jeweilige Vorgehen. Dieses ist bei der
Implementation in allen kommenden Ubungen anzuwenden.

Es ist wichtig, dass Sie sich dieses Vorgehen aneignen, da auch die Prufungen so umgesetzt sind und
die erreichte Note durch die Anzahl korrekter Tests gegeben ist.

Dauer

40 Minuten + Hausaufgabenzeit

Abgabe

Commit und Push auf github

Anleitung zu Klasse Bottle

Klassendiagramm:

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/klassendiagramm
https://wiki.bzz.ch/howto/codingstandards/start
https://de.ryte.com/wiki/Test_Driven_Development#:~:text=Test%20Driven%20Development%20(deutsch%3A%20testgeleitete,Prozess%20der%20Softwareentwicklung%20zu%20leiten.

Last
update:
2024/06/26
08:36

modul:m320_2024:learningunits:lu02:aufgaben:bottle https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/aufgaben/bottie?rev=1719383779

Bottle

- quantity_available : float = (0)
- capacity : float
- color : String

+ Bottle(color: String, capacity: float)
+ get_color{) : String

+ get_capacity() : float

+ get_quantity_available() : float

+ open_bottle() : void

+ close the bottle() : void

+ fill_bottle() : void

+ get_liquid(amount : float) : float

Beschreibung der Klasse:
Die Klasse Bottle stellt eine einfache Trinkflasche mit 3 Attributen sowie einigen Methoden dar.

Attribute

e quantity available halt die aktuelle Menge in der Flasche fest.
e capacity ist die maximale Menge, die in der Flasche Platz findet.
e color ist die Farbe der Flasche.

Methoden

e ipit_ (..) (der Konstruktor der Klasse Bottle) initialisiert die verfugbare Menge
(quantitiy_avaible) auf 0, wahrend Kapazitat (capacity) und Farbe (color) der Flasche durch
Parameter festgelegt werden.

e color() liefert die Farbe der Flasche.

e capacity() liefert die maximale Menge der Klasse.

e quantitiy available() liefert die in der Flasche vorhandene Menge.

e open bottle() wird leer implementiert (Keyword pass verwenden)

e close the bottle() wird leer implementiert.

e fill bottle() fullt die Flasche bis zum maximalen Fassungsvermdgen.

e get liquid(amount) liefert die angeforderte Menge aus der Flasche, falls diese Menge noch
verflgbar ist. Wenn die verfugbare Menge (quantitiy_avaible) kleiner ist, wir diese Menge
geliefert und die Flasche ist leer.

Vorgehen:

1. Akzeptieren Sie das GitHub Classroom Assignment.
Klonen Sie ihr Repository in die Entwicklungsumgebung.
3. Implementieren Sie den Konstruktor (_init (..)) und initialisieren Sie die Attribute gemass
Beschreibung.
4. Implementieren und testen Sie das Attribut color
1. Schreiben Sie die @property fur color.

N

https://wiki.bzz.ch/ Printed on 2026/02/10 07:04

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bottle.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle

2026/02/10 07:04 3/6 LU02.A02 - Klassendiagramm "Bottle" umsetzen

2.

3.

FUhren Sie in test Bottle class.py die Testmethode test color aus. Sie muss
fehlerfrei ablaufen.

Das Ergebnis des Tests muss wie folgt aussehen:

Wird ein Fehler signalisiert, muss die Methode solange bearbeitet werden, bis der Test
«passed» ist.
Beispiel eines fehlerhaften Testlaufs:

5. Fuhren Sie in Ihrer Entwicklungsumgebung einen Commit und einen Push aus.
Wichtig: Immer dann, wenn Sie einen Test erfolgreich ausgefihrt haben, pushen Sie das
Programm. So ist sichergestellt, dass auf git jederzeit lauffahiger (und bewertbarer) Code liegt!
6. Implementieren Sie nun Schritt flr Schritt die weiteren Methoden nach dem gleichen Vorgehen.

1.
2.
3.

capacity() = test capacity
quantitiy available() = test initial quantity
open bottle() und close the bottle() werden mit der pass-Anweisung (leere
Methoden ohne Funktion) realisiert. Testmethode: test open_and close bottle.
fill bottle() = test fill bottle. Uberlegen Sie sich, wie Sie sicherstellen
kdénnen, dass die Flasche ganz gefullt ist.
In der Methode get liquid(..) stellen Sie sicher, dass die gelieferte Menge korrekt ist.
Dazu mussen Sie Uberprufen, ob die angeforderte Menge (amount) in der Flasche
verflgbar ist. Weiter missen Sie sicherstellen, dass der Inhalt der Flasche um den Betrag
verringert wird. Reicht der Inhalt nicht, wird einfach der Rest in der Flasche geliefert (und
die Flasche ist leer)

1. Testmethoden: test get liquid available,

test get liquid not avaible, test get liquid partial avaible

Zum Schluss fihren noch einmal alle Tests aus. Geben Sie dazu im Terminal (Eingabeaufforderung)
den Befehl pytest ein.

Das Testergebnis muss nun wie folgt aussehen:

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bottle-teststart.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle
https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bottle-testergebnis.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle
https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bottle-testergebnisfailed.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle

Last
update:
2024/06/26
08:36

modul:m320_2024:learningunits:lu02:aufgaben:bottle https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/aufgaben/bottie?rev=1719383779

Anleitung zu Klasse BankAccount

Klassendiagramm

BankAccount

- balance : float
- gverdraft ; float
- customer ; Customer

+ BankAccount{max_overdraft : float, customer : Customer)
+ get_balance() : amount

+ get_overdraft() : float

+ get_customer() : Customer

+ booking(amount : float) : void

+ get_money(amount : float)

Beschreibung

Die Klasse BankAccount beschreibt ein Bankkonto fiir einen Kunden (Customer). Das Konto kann
innerhalb eines bestimmten Wertes Uberzogen werden, d.h. dass auch ein negativer Saldo mdglich
ist.

Attribute

e balance gibt den aktuellen Kontostand (Saldo) wieder.

e overdraft legt fest, um welchen Betrag das Konto Uberzogen werden darf, d.h. welcher
Minusbetrag maglich ist. (typisch fur ein Kreditkonto)

e customer ist die Referenz auf ein Objekt der Klasse Customer.

Methoden

https://wiki.bzz.ch/ Printed on 2026/02/10 07:04

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bottle-gesamttestergebnis.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle
https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bankaccount.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle

2026/02/10 07:04 5/6 LU02.A02 - Klassendiagramm "Bottle" umsetzen

e init (..) (der Konstruktor der Klasse BankAccount) initialisiert den Saldo (balance) auf
0.0 und legt den Uberzug (overdraft) sowie den referenzierten Kunden (customer) fest.

e balance() liefert den aktuellen Saldo des Kontos (kann auch negativ sein).

e overdraft () liefert den max. Betrag, um den das Konto Uberzogen werden darf.

e customer() liefert die Referenz zu einem Customer-Objekt.

e booking(..) bucht einen Betrag (amount) ins Konto ein und erhdht somit den Saldo
(balance).

e get money/(..) bucht einen Betrag (amount) vom Konto ab. Dabei darf der Betrag max. so
gross sein, dass Saldo + Uberzug nicht (iberschritten werden. Ist der Betrag zu gross, liefert die
Methode den Wert 0.0 zurtick (= kein Bezug maglich).

Vorgehen

1. Implementieren Sie den Konstruktor (__init (..)) und initialisieren Sie die Attribute gemass
Beschreibung.

2. Erstellen Sie die getter-Methdode (als @property) fur das Attribut balance und testen Sie dies
mit der Testmethode test initial balance in der Datei test BankAccount class.py.
Der Test muss fehlerfrei ausgeflhrt werden. Pushen Sie ihren Code.

3. Erstellen Sie die getter Methode flr das Attribut overdraft und testen Sie diese mit
test initial overdraft.

Der Test muss fehlerfrei ausgefuhrt werden. Pushen Sie ihren Code.

4. Erstellen Sie die getter-Methode fur das Attribut customer und testen Sie diese mit
test customer.

Der Test muss fehlerfrei ausgeflhrt werden. Pushen Sie ihren Code.

5. Erstellen Sie die Methode booking(..) gemass der Beschreibung. Testen Sie die Methode mit
test booking.

Der Test muss fehlerfrei ausgefuhrt werden. Pushen Sie ihren Code.

6. Erstellen Sie die Methode get money(..) gemass der Beschreibung. Achten Sie darauf, wie der
angeforderte Betrag beziiglich Saldo (balance) und Uberzug (overdraft) gepriift werden
muss.

7. Testen Sie nun die Methode der Reihe nach mit
- test get money available fur einen korrekten Bezug.

- test get money not avaiable flr einen nicht glltigen Bezug.
- test get money overdraft fur einen Bezug innerhalb der Kredit-Limite.
- test balance after_transaction fur die Kontrolle des Saldos.
FUhren Sie nach jedem der Tests einen commit und push aus!
8. Fuhren Sie nun die Testklasse als Ganzes aus.
Das Testergebnis muss wie folgt aussehen:

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bankaccount-gesamttestergebnis.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle

Last

;832}3&26 modul:m320_2024:learningunits:lu02:aufgaben:bottle https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/aufgaben/bottie?rev=1719383779

08:36

© René Probst

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/aufgaben/bottle?rev=1719383779

Last update: 2024/06/26 08:36

https://wiki.bzz.ch/ Printed on 2026/02/10 07:04

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/aufgaben/bottle?rev=1719383779

	LU02.A02 - Klassendiagramm umsetzen
	Auftrag
	Vorgehen
	Dauer
	Abgabe
	Anleitung zu Klasse Bottle
	Attribute
	Methoden
	Vorgehen:

	Anleitung zu Klasse BankAccount
	Klassendiagramm
	Beschreibung
	Attribute
	Methoden
	Vorgehen

