
2026/02/10 07:04 1/6 LU02.A02 - Klassendiagramm "Bottle" umsetzen

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02.A02 - Klassendiagramm umsetzen

Implementieren Sie das Klassendiagramm als Sourcecode.

Auftrag

Implementieren Sie das Klassendiagramm Bottle als Python-Code.1.
Orientieren Sie sich für die Umsetzung am Beispiel "Door".
Halten Sie die BZZ Codingstandards für Python ein.2.
Die Aufgabe ist nur dann vollständig gelöst, wenn Sie auch die BZZ-Vorgaben bezüglich «guter
Programmierung» einhalten.

Vorgehen

Beim Lösen der Programmieraufgaben orientieren wir uns am TDD (test driven development). Die
nötigen Testfälle werden durch die Lehrpersonen in Ihrem GitHub Repository bereitgestellt.

Sie finden weiter unten die genauen Anleitung für das jeweilige Vorgehen. Dieses ist bei der
Implementation in allen kommenden Übungen anzuwenden.
Es ist wichtig, dass Sie sich dieses Vorgehen aneignen, da auch die Prüfungen so umgesetzt sind und
die erreichte Note durch die Anzahl korrekter Tests gegeben ist.

Dauer

40 Minuten + Hausaufgabenzeit

Abgabe

Commit und Push auf github

Anleitung zu Klasse Bottle

Klassendiagramm:

https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/klassendiagramm
https://wiki.bzz.ch/howto/codingstandards/start
https://de.ryte.com/wiki/Test_Driven_Development#:~:text=Test%20Driven%20Development%20(deutsch%3A%20testgeleitete,Prozess%20der%20Softwareentwicklung%20zu%20leiten.

Last
update:
2024/06/26
08:36

modul:m320_2024:learningunits:lu02:aufgaben:bottle https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/aufgaben/bottle?rev=1719383779

https://wiki.bzz.ch/ Printed on 2026/02/10 07:04

Beschreibung der Klasse:
Die Klasse Bottle stellt eine einfache Trinkflasche mit 3 Attributen sowie einigen Methoden dar.

Attribute

quantity_available hält die aktuelle Menge in der Flasche fest.
capacity ist die maximale Menge, die in der Flasche Platz findet.
color ist die Farbe der Flasche.

Methoden

__init__(…) (der Konstruktor der Klasse Bottle) initialisiert die verfügbare Menge
(quantitiy_avaible) auf 0, während Kapazität (capacity) und Farbe (color) der Flasche durch
Parameter festgelegt werden.
color() liefert die Farbe der Flasche.
capacity() liefert die maximale Menge der Klasse.
quantitiy_available() liefert die in der Flasche vorhandene Menge.
open_bottle() wird leer implementiert (Keyword pass verwenden)
close_the_bottle() wird leer implementiert.
fill_bottle() füllt die Flasche bis zum maximalen Fassungsvermögen.
get_liquid(amount) liefert die angeforderte Menge aus der Flasche, falls diese Menge noch
verfügbar ist. Wenn die verfügbare Menge (quantitiy_avaible) kleiner ist, wir diese Menge
geliefert und die Flasche ist leer.

Vorgehen:

Akzeptieren Sie das GitHub Classroom Assignment.1.
Klonen Sie ihr Repository in die Entwicklungsumgebung.2.
Implementieren Sie den Konstruktor (__init__(…)) und initialisieren Sie die Attribute gemäss3.
Beschreibung.
Implementieren und testen Sie das Attribut color4.

Schreiben Sie die @property für color.1.

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bottle.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle

2026/02/10 07:04 3/6 LU02.A02 - Klassendiagramm "Bottle" umsetzen

BZZ - Modulwiki - https://wiki.bzz.ch/

Führen Sie in test_Bottle_class.py die Testmethode test_color aus. Sie muss2.
fehlerfrei ablaufen.

Das Ergebnis des Tests muss wie folgt aussehen:3.

Wird ein Fehler signalisiert, muss die Methode solange bearbeitet werden, bis der Test
«passed» ist.
Beispiel eines fehlerhaften Testlaufs:

Führen Sie in Ihrer Entwicklungsumgebung einen Commit und einen Push aus.5.
Wichtig: Immer dann, wenn Sie einen Test erfolgreich ausgeführt haben, pushen Sie das
Programm. So ist sichergestellt, dass auf git jederzeit lauffähiger (und bewertbarer) Code liegt!
Implementieren Sie nun Schritt für Schritt die weiteren Methoden nach dem gleichen Vorgehen.6.

capacity() ⇒ test_capacity1.
quantitiy_available() ⇒ test_initial_quantity2.
open_bottle() und close_the_bottle() werden mit der pass-Anweisung (leere3.
Methoden ohne Funktion) realisiert. Testmethode: test_open_and_close_bottle.
fill_bottle() ⇒ test_fill_bottle. Überlegen Sie sich, wie Sie sicherstellen4.
können, dass die Flasche ganz gefüllt ist.
In der Methode get_liquid(…) stellen Sie sicher, dass die gelieferte Menge korrekt ist.5.
Dazu müssen Sie überprüfen, ob die angeforderte Menge (amount) in der Flasche
verfügbar ist. Weiter müssen Sie sicherstellen, dass der Inhalt der Flasche um den Betrag
verringert wird. Reicht der Inhalt nicht, wird einfach der Rest in der Flasche geliefert (und
die Flasche ist leer)

Testmethoden: test_get_liquid_available,1.
test_get_liquid_not_avaible, test_get_liquid_partial_avaible

Zum Schluss führen noch einmal alle Tests aus. Geben Sie dazu im Terminal (Eingabeaufforderung)
den Befehl pytest ein.

Das Testergebnis muss nun wie folgt aussehen:

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bottle-teststart.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle
https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bottle-testergebnis.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle
https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bottle-testergebnisfailed.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle

Last
update:
2024/06/26
08:36

modul:m320_2024:learningunits:lu02:aufgaben:bottle https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/aufgaben/bottle?rev=1719383779

https://wiki.bzz.ch/ Printed on 2026/02/10 07:04

Anleitung zu Klasse BankAccount

Klassendiagramm

Beschreibung

Die Klasse BankAccount beschreibt ein Bankkonto für einen Kunden (Customer). Das Konto kann
innerhalb eines bestimmten Wertes überzogen werden, d.h. dass auch ein negativer Saldo möglich
ist.

Attribute

balance gibt den aktuellen Kontostand (Saldo) wieder.
overdraft legt fest, um welchen Betrag das Konto überzogen werden darf, d.h. welcher
Minusbetrag möglich ist. (typisch für ein Kreditkonto)
customer ist die Referenz auf ein Objekt der Klasse Customer.

Methoden

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bottle-gesamttestergebnis.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle
https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bankaccount.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle

2026/02/10 07:04 5/6 LU02.A02 - Klassendiagramm "Bottle" umsetzen

BZZ - Modulwiki - https://wiki.bzz.ch/

__init__(…) (der Konstruktor der Klasse BankAccount) initialisiert den Saldo (balance) auf
0.0 und legt den Überzug (overdraft) sowie den referenzierten Kunden (customer) fest.
balance() liefert den aktuellen Saldo des Kontos (kann auch negativ sein).
overdraft() liefert den max. Betrag, um den das Konto überzogen werden darf.
customer() liefert die Referenz zu einem Customer-Objekt.
booking(…) bucht einen Betrag (amount) ins Konto ein und erhöht somit den Saldo
(balance).
get_money(…) bucht einen Betrag (amount) vom Konto ab. Dabei darf der Betrag max. so
gross sein, dass Saldo + Überzug nicht überschritten werden. Ist der Betrag zu gross, liefert die
Methode den Wert 0.0 zurück (= kein Bezug möglich).

Vorgehen

Implementieren Sie den Konstruktor (__init__(…)) und initialisieren Sie die Attribute gemäss1.
Beschreibung.
Erstellen Sie die getter-Methdode (als @property) für das Attribut balance und testen Sie dies2.
mit der Testmethode test_initial_balance in der Datei test_BankAccount_class.py.
Der Test muss fehlerfrei ausgeführt werden. Pushen Sie ihren Code.
Erstellen Sie die getter_Methode für das Attribut overdraft und testen Sie diese mit3.
test_initial_overdraft.
Der Test muss fehlerfrei ausgeführt werden. Pushen Sie ihren Code.
Erstellen Sie die getter-Methode für das Attribut customer und testen Sie diese mit4.
test_customer.
Der Test muss fehlerfrei ausgeführt werden. Pushen Sie ihren Code.
Erstellen Sie die Methode booking(…) gemäss der Beschreibung. Testen Sie die Methode mit5.
test_booking.
Der Test muss fehlerfrei ausgeführt werden. Pushen Sie ihren Code.
Erstellen Sie die Methode get_money(…) gemäss der Beschreibung. Achten Sie darauf, wie der6.
angeforderte Betrag bezüglich Saldo (balance) und Überzug (overdraft) geprüft werden
muss.
Testen Sie nun die Methode der Reihe nach mit7.
- test_get_money_available für einen korrekten Bezug.
- test_get_money_not_avaiable für einen nicht gültigen Bezug.
- test_get_money_overdraft für einen Bezug innerhalb der Kredit-Limite.
- test_balance_after_transaction für die Kontrolle des Saldos.
Führen Sie nach jedem der Tests einen commit und push aus!
Führen Sie nun die Testklasse als Ganzes aus.8.
Das Testergebnis muss wie folgt aussehen:

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/aufgaben/lu01-aufg4-bankaccount-gesamttestergebnis.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Aaufgaben%3Abottle

Last
update:
2024/06/26
08:36

modul:m320_2024:learningunits:lu02:aufgaben:bottle https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/aufgaben/bottle?rev=1719383779

https://wiki.bzz.ch/ Printed on 2026/02/10 07:04

 © René Probst

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/aufgaben/bottle?rev=1719383779

Last update: 2024/06/26 08:36

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/aufgaben/bottle?rev=1719383779

	LU02.A02 - Klassendiagramm umsetzen
	Auftrag
	Vorgehen
	Dauer
	Abgabe
	Anleitung zu Klasse Bottle
	Attribute
	Methoden
	Vorgehen:

	Anleitung zu Klasse BankAccount
	Klassendiagramm
	Beschreibung
	Attribute
	Methoden
	Vorgehen

