2026/02/03 10:52 1/3 LUO2b - Konzept des data hiding

LUO2b - Konzept des data hiding

Unter data hiding (Datenkapselung) versteht man den
Zugriff auf die Attribute eines Objektes nur mittels Methoden
. und nie im Direktzugriff
© https://de.wikipedia.org/wiki/Datenkapselung_(Programmieru
ng).

Im UML-Diagramm werden daher die Attribute mit dem Modifikator «private», hier ein - Zeichen
versehen.

E}:olur : String

Abb. private-Modifikator in UML
Was bedeutet nun aber data hiding praktisch betrachtet?

Wir nehmen hier wieder unser Beispiel der Ture. Gemass UML-Diagramm sind alle Attribute private
deklariert. Ein Zugriff in der Art

some_door = Door
some _door.door is open = True

ist somit nicht erlaubt. Ware dem nicht so, kénnte z.B. auch im Zustand verriegelt die Ture
geodffnet werden, was aber gar nicht geht. Viel mehr wird in der Methode lock the door
sichergestellt, dass eben die Bedingungen gemass Zustandsdiagramm eingehalten werden.

lock the door(self):
Methode fur das verriegeln der Tire.
Das ist nur moglich, wenn die Ture nicht offen ist.
Fir das verriegeln ist aber das Tirschloss zustandig. Es weiss wie das
geht.
self. door is open False:
self. door is locked = self. the door lock.lock

Der Benutzer der Klasse Door ist also vollstandig von der Art der Implementation befreit und muss
sich um keinerlei Zusicherungen kimmern. Es genugt, wenn er die passenden Methode aufruft. Hier

also

some_door.lock the door

BZZ - Modulwiki - https://wiki.bzz.ch/


https://de.wikipedia.org/wiki/Datenkapselung_(Programmierung)
https://de.wikipedia.org/wiki/Datenkapselung_(Programmierung)
https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu01/theorie/klassendiagramm_-_modifikator_private.png?id=modul%3Am320_2024%3Alearningunits%3Alu02%3Adatahiding

Last update:

2025/11/17 08:33 modul:m320_2024:learningunits:lu02:datahiding https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/datahiding

data hiding bei Python

Attribute

Attribute die im Klassendiagramm als private deklariert sind, missen in Python im Konstruktor
initialisiert werden. Dies erfolgt durch folgende Schreibweise

self. attributname = initial wert

Im Gegensatz zu anderen Programmiersprachen gibt es in
__ Python keine echten private Attribute. Mit der Schreibweise
@ _attributname zeigen wir an, dass dieses Attribut nicht
von ausserhalb der Klasse manipuliert werden soll. Es wird
aber nicht durch den Python-Interpreter verhindert, dass
trotzdem auf solche Attribute zugegriffen wird.

Property und Setter

Durch den Einsatz von @property und @GATTRIBUT . setter kdnnen wir das Prinzip des Data Hidings
unterstutzen. Als Beispiel betrachten wir das Attribut color der Klasse Door.

1. Door:

2. ~_init (self, ref2door lock, base color):
3. self.color = base color

4.

5. property

6. color(self

7. e

8. getter-Methode fur die Eigenschaft color
9. :return: die Farbe des Objekts

10. e

11. self. color

12.

13. color.setter

14, color(self, new color):

15. e

16. setter-Methode fiur die Eigenschaft color
17. :param new color:

18. e

19. self. color = new color

20.

21. __name__ ' main_ ':

22. some_door = Door(None, 'blue’

23. f'The color is {some door.color}'

https://wiki.bzz.ch/ Printed on 2026/02/03 10:52



2026/02/03 10:52 3/3 LUO2b - Konzept des data hiding

24, some_door.color 'red’
25. f'The color is {some door.color}'

Auf den ersten Blick scheint es, als wirde das Programm in Zeile 24 direkt auf das Attribut color
zugreifen. Tatsachlich erkennt Python die Decorators @property und @color.setter und leitet die
Zugriffe auf die entsprechenden Methoden um.

©

8 René Probst, bearbeitet durch Marcel Suter

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/datahiding

Last update: 2025/11/17 08:33

BZZ - Modulwiki - https://wiki.bzz.ch/


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu02/datahiding

	LU02b - Konzept des data hiding
	data hiding bei Python
	Attribute
	Property und Setter



