
2026/02/03 14:18 1/4 LU04a - Konstruktor

BZZ - Modulwiki - https://wiki.bzz.ch/

LU04a - Konstruktor

Konstruktoren dienen der Initialisierung von Objekten bei
deren Erzeugung. Der Code des Konstruktors wird genau
einmal ausgeführt.

Merkmale

Ein Konstruktor liefert KEINEN Rückgabewert.
Ein Konstruktor kann die Attribute mit einem Defaultwert setzen oder mittels Parameter
konkrete Werte zuweisen.
Ein Konstruktor führt i.d.R. keine Programmlogik aus.

Default Konstruktor

Er wird OHNE Parameter aufgerufen und initialisiert alle Attribute mit einem vorgegebenen Wert
(Default-Wert).

Beispiel: Default Konstruktor

class Shoe:
 def __init__(self):
 self._shoe_size = 40
 self._color = 'green'
 self._shoe_type = 'sneaker'

Parametrierter Konstruktor

Ein Konstruktor kann Initialwerte entgegennehmen und ein Objekt so in einem definierten Zustand
erzeugen. Es empfiehlt sich, die Attribute mit einem Initalwert zu versehen, damit keine undefinierten
Werte resultieren können. Dies ist vor allem bei Wertzusicherungen wichtig.

Beispiel: Parametrierter Konstruktor

class Shoe:
 def __init__(self, shoe_size = 40, color = 'green', shoe_type =
'sneaker'):
 self._shoe_size = shoe_size
 self._color = color

Last update:
2024/08/14 05:55 modul:m320_2024:learningunits:lu04:konstruktor https://wiki.bzz.ch/modul/m320_2024/learningunits/lu04/konstruktor

https://wiki.bzz.ch/ Printed on 2026/02/03 14:18

 self._shoe_type = shoe_type

Objekte erzeugen

Ohne Werte

Wird ein Objekt erzeugt, ohne Werte anzugeben (Default-Konstruktor), übernimmt Python die
Initialwerte. Der entsprechende Aufruf sieht dann wie folgt aus:

 shoe = Shoe()

Initialwerte angeben

Werden beim Erzeugen eines Objekts Initialwerte mitgegeben, müssen Sie Sie die Reihenfolge der
Parameter einhalten. Im Beispiel sieht dies so aus:

 shoe = Shoe(44, 'black', 'boots')

Eine andere (bessere?) Möglichkeit ist es, die Namen der Attribute beim Aufruf mitzugeben:

 shoe = Shoe(color='blue', shoe_size=45)

Diese Variante ist vor allem sinnvoll, wenn nur ein Teil der definierten Parameter mitgegeben wird.

Überladen (Overloading)

Viele Programmiersprachen kennen die oben gezeigte Möglichkeit der Benennung von Parametern
nicht. Daher wird bei der Nutzung unterschiedlicher Konstruktoren das Konzept des Überladens
(overloading) angewendet. Dabei darf ein Methodenname mehrfach deklariert werden, solange die
Paramterliste eine klare Unterscheidung (bezüglich der Datentypen) zulässt. Als Beispiel wird hier der
Code der Klasse Shoe in Java wiedergegeben.

Java-Code für parametrierte Konstruktoren

public class Shoe{
 // Deklaration der Attribute und Zuweisung der Initialwerte
 private int shoe_size = 40;
 private String color = "green";
 private String shoe_type = "sneaker";

 public Shoe(){
 // do nothing --> Default Konstruktor
 // die Attribute sind hier mit den oben zugewiesenen Werten

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/02/03 14:18 3/4 LU04a - Konstruktor

BZZ - Modulwiki - https://wiki.bzz.ch/

initialisert.
 }

 public Shoe(int size){
 // überladener Konstruktor mit einem Parameter
 this(); // Aufruf des eigenen Default-Konstruktors
 shoe_size = size;
 }

 public Shoe(int size, String color){
 // überladener Konstruktor mit zwei Parametern
 this(size); // Aufruf des Konstruktors mit dem Parameter size
 this.color = color; // um das Attribut vom Parameter zu unterscheiden,
wird das Schlüsselwort this benötigt.
 }

 public Shoe(int size, String color, String type){
 // überladener Konstruktor mit drei Parametern
 this(size, color); // Aufruf des Konstruktors mit den Parametern size
und color
 shoe_type = type;
 }
 :
 :
 }

Bei der Objekterzeugung wird je nach Parameterliste dann auf den entsprechende Konstruktor
zugegriffen.

 Shoe shoe_1 = new Shoe(); // Aufruf des Default-
Konstuktors
 Shoe shoe_2 = new Shoe(45); // Aufruf des
Konstruktors mit dem Parameter für size
 Shoe shoe_3 = new Shoe(39, 'yellow'); // Aufruf des
Konstruktors mit den Parametern für size und color
 Shoe shoe_4 = new Shoe(41, 'grey', 'slipper'); // Aufruf des
Konstruktors mit den Parametern für size, color und style

UML-Klassendiagramm mit überladenen Konstruktoren

Diese Technik hat sich auch in die Darstellung der UML übertragen. So wird im Klassendiagramm für
jede mögliche Parameterliste der Konstruktor vollständig angeschrieben.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last update:
2024/08/14 05:55 modul:m320_2024:learningunits:lu04:konstruktor https://wiki.bzz.ch/modul/m320_2024/learningunits/lu04/konstruktor

https://wiki.bzz.ch/ Printed on 2026/02/03 14:18

Abb: UML-Klassendiagramm mit überladenen Konstruktoren

M320-LU04

 René Probst, bearbeitet durch Marcel Suter

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu04/konstruktor

Last update: 2024/08/14 05:55

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu02/theorie/lu02_-_uml-klassendiagramm.png?id=modul%3Am320_2024%3Alearningunits%3Alu04%3Akonstruktor
https://wiki.bzz.ch/tag/m320-lu04?do=showtag&tag=M320-LU04
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu04/konstruktor

	LU04a - Konstruktor
	Merkmale
	Default Konstruktor
	Beispiel: Default Konstruktor

	Parametrierter Konstruktor
	Beispiel: Parametrierter Konstruktor

	Objekte erzeugen
	Ohne Werte
	Initialwerte angeben

	Überladen (Overloading)
	Java-Code für parametrierte Konstruktoren
	UML-Klassendiagramm mit überladenen Konstruktoren

