2026/02/03 14:18 1/4 LUO4a - Konstruktor

LUO4a - Konstruktor

deren Erzeugung. Der Code des Konstruktors wird genau

i i Konstruktoren dienen der Initialisierung von Objekten bei
einmal ausgefuhrt.

Merkmale

e Ein Konstruktor liefert KEINEN Ruckgabewert.

e Ein Konstruktor kann die Attribute mit einem Defaultwert setzen oder mittels Parameter
konkrete Werte zuweisen.

e Ein Konstruktor fuhrt i.d.R. keine Programmlogik aus.

Default Konstruktor

Er wird OHNE Parameter aufgerufen und initialisiert alle Attribute mit einem vorgegebenen Wert
(Default-Wert).

Beispiel: Default Konstruktor

Shoe:

__init (self):
self. shoe size
self. color ‘green'
self. shoe type ‘sneaker’

Parametrierter Konstruktor

Ein Konstruktor kann Initialwerte entgegennehmen und ein Objekt so in einem definierten Zustand
erzeugen. Es empfiehlt sich, die Attribute mit einem Initalwert zu versehen, damit keine undefinierten
Werte resultieren konnen. Dies ist vor allem bei Wertzusicherungen wichtig.

Beispiel: Parametrierter Konstruktor

Shoe:
~init (self, shoe size color ‘green', shoe type
‘sneaker’
self. shoe size = shoe size
self. color color

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:

2024/08/14 05:55 modul:m320_2024:learningunits:lu04:konstruktor https://wiki.bzz.ch/modul/m320_2024/learningunits/lu04/konstruktor

self. shoe type = shoe type

Objekte erzeugen

Ohne Werte

Wird ein Objekt erzeugt, ohne Werte anzugeben (Default-Konstruktor), Gbernimmt Python die
Initialwerte. Der entsprechende Aufruf sieht dann wie folgt aus:

shoe Shoe

Initialwerte angeben

Werden beim Erzeugen eines Objekts Initialwerte mitgegeben, missen Sie Sie die Reihenfolge der
Parameter einhalten. Im Beispiel sieht dies so aus:

shoe = Shoe 'black', 'boots'
Eine andere (bessere?) Moglichkeit ist es, die Namen der Attribute beim Aufruf mitzugeben:
shoe = Shoe(color='blue', shoe size

Diese Variante ist vor allem sinnvoll, wenn nur ein Teil der definierten Parameter mitgegeben wird.

Uberladen (Overloading)

Viele Programmiersprachen kennen die oben gezeigte Moglichkeit der Benennung von Parametern
nicht. Daher wird bei der Nutzung unterschiedlicher Konstruktoren das Konzept des Uberladens
(overloading) angewendet. Dabei darf ein Methodenname mehrfach deklariert werden, solange die
Paramterliste eine klare Unterscheidung (bezuglich der Datentypen) zulasst. Als Beispiel wird hier der
Code der Klasse Shoe in Java wiedergegeben.

Java-Code fur parametrierte Konstruktoren

Shoe
// Deklaration der Attribute und Zuweisung der Initialwerte
int shoe size

String color "green"
String shoe type "sneaker"
Shoe

// do nothing --> Default Konstruktor
// die Attribute sind hier mit den oben zugewiesenen Werten

https://wiki.bzz.ch/ Printed on 2026/02/03 14:18

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/02/03 14:18 3/4 LUO4a - Konstruktor

initialisert.

public Shoe(int size
// Uberladener Konstruktor mit einem Parameter
this // Aufruf des eigenen Default-Konstruktors
shoe size = size

public Shoe(int size, String color
// lUberladener Konstruktor mit zwei Parametern
this(size // Aufruf des Konstruktors mit dem Parameter size
this.color color; // um das Attribut vom Parameter zu unterscheiden,
wird das Schlusselwort this benédtigt.

public Shoe(int size, String color, String type
// Uberladener Konstruktor mit drei Parametern
this(size, color // Aufruf des Konstruktors mit den Parametern size
und color
shoe type = type

Bei der Objekterzeugung wird je nach Parameterliste dann auf den entsprechende Konstruktor
zugegriffen.

Shoe shoe 1 = new Shoe // Aufruf des Default-

Konstuktors

Shoe shoe 2 = new Shoe(45 // Aufruf des
Konstruktors mit dem Parameter flr size

Shoe shoe 3 = new Shoe(39, 'yellow' // Aufruf des
Konstruktors mit den Parametern flr size und color

Shoe shoe 4 = new Shoe(41, 'grey', 'slipper' // Aufruf des

Konstruktors mit den Parametern fir size, color und style

UML-Klassendiagramm mit uberladenen Konstruktoren

Diese Technik hat sich auch in die Darstellung der UML Ubertragen. So wird im Klassendiagramm fur
jede mogliche Parameterliste der Konstruktor vollstandig angeschrieben.

BZZ - Modulwiki - https://wiki.bzz.ch/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last update: T . .
2024/08/14 05:55 modul:m320_2024:learningunits:lu04:konstruktor https://wiki.bzz.ch/modul/m320_2024/learningunits/lu04/konstruktor

Shoe

- shoe_size : integer =(40)
- color ; String =("green")
- shoe_type : String =("sneaker"”)

+5Shoe() Die Klasse weist 4 verschiedene Konstruktoren auf,

+ ize : \ \ \
Sh“h!ze it | _ die alle einzeln aufgelistet werden.
+ Shoe(size : integer, color ; 5tring)

+ Shoe(size : integer, color ; String, type : 5tring)

Abb: UML-Klassendiagramm mit uberladenen Konstruktoren

M320-LU04

René Probst, bearbeitet durch Marcel Suter

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu04/konstruktor

Last update: 2024/08/14 05:55

https://wiki.bzz.ch/ Printed on 2026/02/03 14:18

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu02/theorie/lu02_-_uml-klassendiagramm.png?id=modul%3Am320_2024%3Alearningunits%3Alu04%3Akonstruktor
https://wiki.bzz.ch/tag/m320-lu04?do=showtag&tag=M320-LU04
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu04/konstruktor

	LU04a - Konstruktor
	Merkmale
	Default Konstruktor
	Beispiel: Default Konstruktor

	Parametrierter Konstruktor
	Beispiel: Parametrierter Konstruktor

	Objekte erzeugen
	Ohne Werte
	Initialwerte angeben

	Überladen (Overloading)
	Java-Code für parametrierte Konstruktoren
	UML-Klassendiagramm mit überladenen Konstruktoren

