
2026/02/02 22:00 1/4 LU11c - Interface in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

LU11c - Interface in Python

Schnittstellen spielen im Software Engineering eine wichtige Rolle. Wenn eine Anwendung wächst,
werden Aktualisierungen und Änderungen an der Codebasis immer schwieriger zu verwalten. Hier
erfahren Sie, wie Sie eine Python-Schnittstelle verwenden, um die Idee der Polymorphie auch
„ausserhalb“ der Vererbungshierarchie anwenden zu können.

Grundsätzlich kann eine Schnittstelle als Vertrag verstanden werden. Sie definiert eine gewisse
Funktionalität durch Methoden. Im Interface wird die Deklaration ohne Implementation festgehalten.
(Anmerkung: man spricht oft auch von vollabstrakten Klassen, so z.B. bei C++)

Diese Funktionalität wird für die korrekte Funktion der Anwendung vorausgesetzt. Die
implementierende Klasse nutzt die Deklaration der Schnittstelle, damit eine einheitliche
Namensgebung gesichert ist und im Sinn der Polymorphie die Nutzung realisiert werden kann.

Beispiel: Objekte mit gleichartiger Funktionalität

Verschieden Objekte, die keine Beziehung zueinander aufweisen müssen, haben eine ähnliche
Funktionalität, die sie nutzen.

Abb: Klassen mit sinngleicher Funktionalität

Obwohl die drei Klassen Mensch, Wasserflugzeug und Baum keine gemeinsame Basis (Oberklasse)
haben, weisen alle die Fähigkeit swim auf. In UML wird diese Gegebenheit wie folgt dargestellt:

Abb: Schnittstellen in UML

Beachten Sie hier die Darstellung einer Schnittstellen-Beziehung als gestrichelte Linie (im Gegensatz
zur Vererbung mit durchgezogener Linie).

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu99/theorie/lu08-abb.8.1-klassen.png?id=modul%3Am320_2024%3Alearningunits%3Alu11%3Ainterface
https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu99/theorie/lu08-abb.8.2-uml-interface.png?id=modul%3Am320_2024%3Alearningunits%3Alu11%3Ainterface

Last update: 2024/10/22
11:13 modul:m320_2024:learningunits:lu11:interface https://wiki.bzz.ch/modul/m320_2024/learningunits/lu11/interface

https://wiki.bzz.ch/ Printed on 2026/02/02 22:00

Abb: UML-Symbole Vererbung und Schnittstelle

Das Beispiel verdeutlicht, was eine Schnittstelle - gegenüber einer Oberklasse - ausmacht. Im Code
können entsprechende Objekte diese Funktionalität nutzen.

a_human_object = Human("Max",)
a_human_object.swim()
···
a_plane_object = Seaplane("Searay",)
a_plane_object.swim()
···
a_tree_object = Tree("Maple",)
a_tree_object.swim()

Werden diese verschiedenen Objekte in einer Liste eingetragen, so kann über alle Objekte iteriert und
die entsprechende Methode swim ausgeführt werden.

Dieses Verhalten entspricht der Idee der Polymorphie. In Pyton wird das konkret mittels Duck-Typing
umgesetzt.

Das Duck-Typing

Der Name Duck-Typing kommt von dem Satz:
Wenn es aussieht wie eine Ente und quakt wie eine Ente, ist
es eine Ente.

Python kennt das Konstrukt des Interface nicht. Es wird ersetzt durch die Technik des Duck-Typing.
Es stellt eine Typisierung dar, welche in dynamischen Sprachen verwendet wird. Nebst Python auch
bei Perl, Ruby, PHP, Javascript usw., wo der Typ oder die Klasse eines Objekts weniger wichtig ist als
die Methode, die es definiert. Mit Duck-Typing überprüfen wir Typen überhaupt nicht. Stattdessen
prüfen wir, ob eine bestimmte Methode oder ein bestimmtes Attribut vorhanden ist.

Wozu Duck-Typing verwenden?

Dank Duck-Typing kann, ähnlich wie wir das bei der Polymorphie gesehen haben, über eine Liste von
Objekten iteriert werden. Der Vorteil ist, dass dazu keine formale Schnittstelle vorhanden sein muss.
Gleichzeitig ist dies aber auch ein Nachteil, so dass entsprechende Checks eingebaut werden sollten,
um Fehler zu vermeiden.

Das Duck-Typing entspricht der Idee der oben erklärten Interfaces bei Sprachen wie Java oder C#.

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu99/theorie/lu08-abb.8.3-uml-symbolik.png?id=modul%3Am320_2024%3Alearningunits%3Alu11%3Ainterface

2026/02/02 22:00 3/4 LU11c - Interface in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

Wie wird Duck-Typing verwendet?

Beim Duck-Typing werden beliebige Objekte in einer Liste gesammelt. Wird die Liste traversiert (mit
einer for-Schleife), kann bei Objekten mit einer geforderten Methode - hier z.B. swim - diese
ausgeführt werden.

Beispiel: Umsetzung einer pseudo Schnittstelle mit Duck-Typing

class People:
 def swim(self):
 print('schwimmen wie ein Mensch')

class Tree:
 def swim(self):
 print('schwimmen wie ein Baumstamm')

class Aeroplane:
 def swim(self):
 print('schwimmen wie ein Wasserflugzeug')

class Machine:
 pass # kann nicht schwimmen

if __name__ == '__main__':
 print('Deno Polymorphie mittels Interface (durch Duck-Typing)')

 container = []
 container.append(People())
 container.append(Tree())
 container.append(Aeroplane())
 container.append(Machine())

 for obj in container:
 if hasattr(obj, 'swim'): # sicherstellen, dass nur Objekte mit einer
 obj.swim() # Methode swim aufgerufen werden.

Das Programm liefert folgende Ausgabe:

schwimmen wie ein Mensch
schwimmen wie ein Baumstamm
schwimmen wie ein Wasserflugzeug

Der Grund dafür liegt darin, dass Python als dynamische Sprache bei Methoden mit derselben
Signatur so tut, also ob dafür eine Schnittstelle vorhanden wäre. Das passiert automatisch und
implizit (=versteckt). Wie bereits erwähnt, wird daher in diesem Zusammenhang von einer
informellen Schnittstelle gesprochen:

Last update: 2024/10/22
11:13 modul:m320_2024:learningunits:lu11:interface https://wiki.bzz.ch/modul/m320_2024/learningunits/lu11/interface

https://wiki.bzz.ch/ Printed on 2026/02/02 22:00

Beispiel: Informelle Schnittstelle

Abb: Die Schnittstelle Flying existiert nur implizit und ist daher informell

 © Daniel Fahrni, René Probst, bearbeitet durch Marcel Suter
Quellen: Duck-Typing in Python

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu11/interface

Last update: 2024/10/22 11:13

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.geeksforgeeks.org/duck-typing-in-python/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu11/interface

	LU11c - Interface in Python
	Beispiel: Objekte mit gleichartiger Funktionalität
	Das Duck-Typing
	Wozu Duck-Typing verwenden?
	Wie wird Duck-Typing verwendet?
	Beispiel: Umsetzung einer pseudo Schnittstelle mit Duck-Typing
	Beispiel: Informelle Schnittstelle

