2026/02/03 18:28 1/4 LU11c - Interface in Python

2. Interface in Python

Schnittstellen spielen im Software Engineering eine wichtige Rolle. Wenn eine Anwendung wachst,
werden Aktualisierungen und Anderungen an der Codebasis immer schwieriger zu verwalten. Hier
erfahren Sie, wie Sie eine Python-Schnittstelle verwenden, um die Idee der Polymorphie auch
»ausserhalb” der Vererbungshierarchie anwenden zu kénnen.

Grundsatzlich kann eine Schnittstelle als Vertrag verstanden werden. Sie definiert eine gewisse
Funktionalitat durch Methoden. Im Interface wird die Deklaration ohne Implementation festgehalten.
(Anmerkung: man spricht oft auch von vollabstrakten Klassen, so z.B. bei C++)

Diese Funktionalitat wird fur die korrekte Funktion der Anwendung vorausgesetzt. Die
implementierende Klasse nutzt die Deklaration der Schnittstelle, damit eine einheitliche
Namensgebung gesichert ist und im Sinn der Polymorphie (siehe LUO7) die Nutzung realisiert werden
kann.

Beispiel 7.3: Objekte mit gleichartiger Funktionalitat
Verschieden Objekte, die keine Beziehung zueinander aufweisen missen, haben eine ahnliche
Funktionalitat, die sie nutzen.

Abb. 7.2: Klassen mit sinngleicher Funktionalitat

Obwohl die drei Klassen Mensch, Wasserflugzeug und Baum keine gemeinsame Basis (Oberklasse)
haben, weisen alle die Fahigkeit swim auf. In UML wird diese Gegebenheit wie folgt dargestellt:

=<interfaces»
Swimmers

+ swim) : voi

R
name : String type : String

+ Humani{name : string, ...] + Seaplane|type @ string, ... + Tree(species | string
+ swimi) - woi + swirmn() : void swim() : void

Abb. 7.3: Schnittstellen in UML

Beachten Sie hier die Darstellung einer Schnittstellen-Beziehung als strichlierte Linie (im Gegensatz
zur Vererbung mit durchgezogener Linie).

Vererbung

Schnittstelle
Abb. 7.4: UML-Symbole Vererbung und Schnittstelle

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu99/theorie/lu08-abb.8.1-klassen.png?id=modul%3Am320_2024%3Alearningunits%3Alu11%3Ainterface
https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu99/theorie/lu08-abb.8.2-uml-interface.png?id=modul%3Am320_2024%3Alearningunits%3Alu11%3Ainterface
https://wiki.bzz.ch/_detail/modul/m320/learningunits/lu99/theorie/lu08-abb.8.3-uml-symbolik.png?id=modul%3Am320_2024%3Alearningunits%3Alu11%3Ainterface

Last
update:
2024/10/22
07:57

modul:m320_2024:learningunits:lull:interface https://wiki.bzz.ch/modul/m320_2024/learningunits/lull/interface?rev=1729576643

Das Beispiel verdeutlicht, was eine Schnittstelle - gegenuber einer Oberklasse - ausmacht. Im Code
kdnnen entsprechende Objekte diese Funktionalitat nutzen.

a_human_object = Human("Max"
a_human_object.swim

a plane object = Seaplan("Searay"
a_plane object.swim

a_tree object = Tree("Maple"
a tree object.swim

Werden diese verschiedenen Objekte in einer Liste eingetragen, so kann Uber alle Objekte iteriert und
die entsprechende Methode swim ausgefuhrt werden.

Dieses Verhalten entspricht der Idee der Polymorphie. In Pyton wird das konkret mittels Duck-Typing
umgesetzt.

Das Duck-Typing

Python kennt das Konstrukt des Interface nicht. Es wird ersetzt durch die Technik des Duck-Typing.
Es stellt eine Typisierung dar, welche in dynamischen Sprachen verwendet wird. Nebst Python auch
bei Perl, Ruby, PHP, Javascript usw., wo der Typ oder die Klasse eines Objekts weniger wichtig ist als
die Methode, die es definiert. Mit Duck-Typing Uberprifen wir Typen uberhaupt nicht. Stattdessen
prufen wir, ob eine bestimmte Methode oder ein bestimmtes Attribut vorhanden ist.

Der Name Duck-Typing kommt von dem Satz:
Wenn es aussieht wie eine Ente und quakt wie eine Ente, ist es eine Ente.

Wozu Duck-Typing verwenden?

Dank Duck-Typing kann, dhnlich wie wir das bei der Polymorphie in LU06 gesehen haben, Uber eine
Liste von Objekten iteriert werden. Der Vorteil ist, dass dazu keine formale Schnittstelle vorhanden
sein muss. Gleichzeitig ist dies aber auch ein Nachteil, so dass entsprechende Checks eingebaut
werden sollten, um Fehler zu vermeiden.

Das Duck-Typing entspricht der Idee der oben erklarten Interfaces bei Sprachen wie Java oder C#.

Wie wird Duck-Typing verwendet?

Beim Duck-Typing werden beliebige Objekte in einer Liste gesammelt. Wird die Liste traversiert (mit
einer for-Schleife), kann bei Objekten mit einer geforderten Methode - hier z.B. swim - diese
ausgefuhrt werden.

https://wiki.bzz.ch/ Printed on 2026/02/03 18:28

2026/02/03 18:28 3/4 LU11c - Interface in Python

Beispiel 7.4: Umsetzung einer psydo Schnittselle mit Duck-Typing

People:
swim(self):
'schwimmen wie ein Mensch'

Tree:
swim(self):
'schwimmen wie ein Baumstamm'

Aeroplane:
swim(self):
'schwimmen wie ein Wasserflugzeug'

Machine:
kann nicht schwimmen

__hame___ ' _main_ ':
'‘Deno Polymorphie mittels Interface (durch Duck-Typing)'

container
container.append(People
container.append(Tree
container.append(Aeroplane
container.append(Machine

obj container:
hasattr(obj, 'swim'): # sicherstellen, dass nur Objekte mit einer
obj.swim # Methode swim aufgerufen werden.

Das Programm liefert folgende Ausgabe:

schwimmen wie ein Mensch
schwimmen wie ein Baumstamm
schwimmen wie ein Wasserflugzeug

Der Grund dafur liegt darin, dass Python als dynamische Sprache bei Methoden mit derselben
Signatur so tut, also ob daflr eine Schnittstelle vorhanden ware. Das passiert automatisch und
implizit (=versteckt). Wie bereits erwahnt, wird daher in diesem Zusammenhang von einer
informellen Schnittstelle gesprochen:

Beispiel 7.5: Informelle Schnittstelle

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

ggg?‘.;(le:()/ZZ modul:m320_2024:learningunits:lull:interface https://wiki.bzz.ch/modul/m320_2024/learningunits/lull/interface?rev=1729576643

07:57

@F.l]nn_g only implicitly
existing = informal
Hihy(): Nane

4 %
' %
F %
@ Bird @.&lrplane @ Fish

Hihy(): None Hhy(): Mone +swim{). Mane

Abb. 7.5: Die Schnittstelle Flying existiert nur implizit und ist daher informell

© Daniel Fahrni, René Probst
Quellen: Duck-Typing in Python

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m320_2024/learningunits/lull/interface?rev=1729576643 3

Last update: 2024/10/22 07:57

https://wiki.bzz.ch/ Printed on 2026/02/03 18:28

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.geeksforgeeks.org/duck-typing-in-python/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m320_2024/learningunits/lu11/interface?rev=1729576643

	[2. Interface in Python]
	[2. Interface in Python]
	2. Interface in Python
	Das Duck-Typing
	Wozu Duck-Typing verwenden?
	Wie wird Duck-Typing verwendet?

