2026/02/12 20:14 1/4 Merkblatt: Klasse

Merkblatt: Klasse

Definition

Semantik flir eine Menge von Objekten. Alle Objekte einer Klasse

i' i Eine Klasse ist die Definition der Attribute, Operationen (Methoden) und der
entsprechen dieser Definition.

UML-Notation

Klassenname i -

. ' Circle |~ Zusicherung

Attributs - radius : float {radius >0} —

namen - center: Point = (10,10) Initialwert
Konstruktor —— + Circle() i
f + display(): None 1
+ remove(): None —Datentyp

Operationen -(:: + <<prop>> radius(): float —_—

+ <<setters> radius(float): None —_ .
. I — Rluckgabewert

+ <<prop=> center(): Point ——— .

.| +<<setter>center(Point): None

\ Sichtbarkeit von Attributen

und Methoden

Klassenname

Er stellt zum einen eine sinnvolle Beschreibung der Klasse dar, ist aber auch der Datentyp der Klasse.
Der Name der Klasse wird durch ein Substantiv ausgedruckt.

class Circle:

Attributname und Datentyp

Attribute stellen die in der Klasse bendtigten Variablen dar.
In der OO-Welt gilt die Regel des ,, data hiding“. Das heisst, dass die Sichtbarkeit der Attribute
(Variablen) private (- im Klassendiagramm) sein sollte.

&

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/_detail/modul/m320_2024/learningunits/lu01/merkblaetter/uml_circle.png?id=modul%3Am320_2024%3Amerkblaetter%3Aklasse

Last update: . . . s Pray—
2024/08/12 06:51 modul:m320_2024:merkblaetter:klasse https://wiki.bzz.ch/modul/m320_2024/merkblaetter/klasse?rev=1723438267

In Python werden private Attribute gekennzeichnet, indem
der Attributsname mit einem Underscore (z.B. radius)
beginnen. Dies zeigt an, dass dieses Attribut nicht direkt
gelesen bzw. verandert werden sollte.

In Python wird der Datentyp in der Regel zur Laufzeit
festgelegt.

class Kreis:
def init (self, value):

self.radius = value # set-Methode fir Attribut
radius aufrufen
self. center = Point(10.0, 10.0) # Mittelpunkt wird als Objekt

vom Typ Point referenziert.

Konstruktor und Initalisierung

Der Konstruktor wird ausgefuhrt, wenn eine Klasse erzeugt wird.

In Python heisst der Konstruktor init .

Wird fUr ein Attribut ein Initialwert verlangt, so muss dieser im Konstruktor ibergeben werden.

circle = Circle(15.5);

Operationen und Riuckgabewert

Operationen dienen dazu, die Attributswerte eines Objektes zu setzen, zu lesen oder den inneren
Zustand des Objekts zu verandern. Operationen kdnnen je nach Bedarf unterschiedliche
Sichtbarkeiten erhalten (private, friendly, protected, public). Entsprechend der Notation liefert eine
Methode einen Rickgabewert (ausser bei None)

Methode ohne Wertruckgabe (oft als Prozedur bezeichnet)
def move point(self, to x, to y):
self.x = to X
self.y = to y
Methode mit Wertruckgabe (oft als Funktion bezeichnet)
def is radius set(self):
if radius '= 0.0:
return True
else:
return False

https://wiki.bzz.ch/ Printed on 2026/02/12 20:14

2026/02/12 20:14 3/4 Merkblatt: Klasse

setter und getter

Methoden die zum Schreiben bzw. Lesen eines Attributs verwendet werden, werden als setter und
getter bezeichnet.

In Python spricht man bei privaten Attributen auch von Properties (Eigenschaften) und hat flr deren
Nutzung eine eigene Deklaration.

getter

Getter dienen dem Auslesen des Wertes eines Attributs.

@property
def radius(self):
return self. radius

Im UML-Klassendiagramm kennzeichnen wir diese Methoden mit «prop».

setter

Setter dienen dem Setzen des Wertes eines Attributs.
@radius.setter
def radius(self, value):

self. radius = value

Im UML-Klassendiagramm kennzeichnen wir diese Methoden mit «setter».

Nutzung

Properties konnen im Code wie Variablen genutzt werden. Es braucht keinen expliziten
Methodenaufruf, um deren Werte zu lesen oder zu schreiben. Implizit wird aber der entsprechende
Code ausgefuhrt. Somit sind auch Verarbeitungen wie z.B. eine Wertzusicherung maglich.

lesen eines Property (uber die getter Methode)
print("Radius des Kreises " + str(circle.radius))

schreiben/setzen eines Property (Uber setter Methode)
circle.radius = 22.45

Zusicherung

Der Code muss diese Anforderung erfullen. Dafur ist in den entsprechenden Operationen zu sorgen.

@radius.setter

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: . . . s Pray—
2024/08/12 06:51 modul:m320_2024:merkblaetter:klasse https://wiki.bzz.ch/modul/m320_2024/merkblaetter/klasse?rev=1723438267

def radius(self, value):
if value > 0.0:
self. radius = value

Sichtbarkeit

Die Sichtbarkeit sagt aus, wer auf die entsprechenden Attribute und Operationen Zugriff hat

e - private = Zugriff nur innerhalb der Klasse
e # protected = Zugriff innerhalb des Vererbungsbaums
e + public = Zugriff von Uberall

Im Gegensatz zu anderen Programmiersprachen erzwingt
Python keine Sichtbarkeit. Bei privaten Attributen und

o Methoden ist es Ublich, einen Underscore am Anfang des
Namens zu schreiben. Dies ist aber nur informativ und
verhindert den direkten Zugriff nicht.

M320-LUO1

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: kS
https://wiki.bzz.ch/modul/m320 2024/merkblaetter/klasse?rev=1723438267 Mt

Last update: 2024/08/12 06:51

https://wiki.bzz.ch/ Printed on 2026/02/12 20:14

https://wiki.bzz.ch/tag/m320-lu01?do=showtag&tag=M320-LU01
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m320_2024/merkblaetter/klasse?rev=1723438267

	Merkblatt: Klasse
	Definition
	UML-Notation
	Klassenname
	Attributname und Datentyp
	Konstruktor und Initalisierung
	Operationen und Rückgabewert
	setter und getter
	getter
	setter
	Nutzung

	Zusicherung
	Sichtbarkeit

