2026/02/03 20:33 1/4 LUO6c - Umsetzung als Beispiel

LUO6¢ - Umsetzung als Beispiel

B Das Beispiel zeigt eine Umsetzung der Autorisation in einer
RESTful Flask Applikation.

Frontend

Token speichern

Das Token wird vom Webserver als Text gesendet. Falls mein Login-Request erfolgreich war,
speichere ich diesen Test im Session Storage.

fetch("./login"

.then response
response.ok
response.text

.then data
sessionStorage.setItem("token", data

Token senden

async httpFetch
url
httpMethod "GET"
token

response await fetch(url
method: httpMethod
headers

"Authorization": "Bearer " token

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2024/03/28 14:07 modul:m321:learningunits:lu06:beispiel https://wiki.bzz.ch/modul/m321/learningunits/lu06/beispiel

Dieses Beispiel zeigt einen asynchronen Aufruf eines Webservices mit GET.

Backend

Das Backend der Nachprufungsapplikation kennt drei unterschiedliche Rollen:

 Keine gultige Anmeldung: Der Client hat kein gultiges Token.
e Lernender: Ein gultiges Token ist vorhanden, die Rolle ist , user”
e Lehrperson: Ein glltiges Token ist vorhanden, die Rolle ist ,teacher”

ExamService

Die einzelnen Services werden mit eigenen Decorators gekennzeichnet.

» @token_required: Prift ob ein gultiges Token vorhanden ist.
* @teacher _required: Pruft zusatzlich ob der Benutzer die Rolle ,teacher” hat.

ExamService(Resource) :
token required
get(self, exam uuid

token required
teacher required
post(self):

In diesem Beispiel darf jeder angemeldete Benutzer einen einzelnen Eintrag lesen (GET). Um einen
Eintrag zu speichern (POST) muss der Benutzer die Lehrer-Rolle haben.

authorization.py

In diesem Modul sind die beiden Decorators programmiert.

token required(func

checks if the authorization token is valid
:param func: callback function

:return:

wraps (func
decorator(*args, **kwargs
token None
"Authorization’ request.headers:
token request.headers| 'Authorization’

https://wiki.bzz.ch/ Printed on 2026/02/03 20:33

2026/02/03 20:33 3/4 LUO6c - Umsetzung als Beispiel

token:
make response(jsonify({"message"”: "A valid token is
missing!"

data = jwt.decode(token
current _app.config['ACCESS TOKEN KEY' algorithms=|["HS256"

email = datal 'email’

person _dao = PersonDAO

g.user = person dao.read person(email

Exception:
make response(jsonify({"message": "EXAM/auth: Invalid

token!"

func(*args, **kwargs

decorator

teacher required(func
wraps (func
wrap(*args, **kwargs
g.user.role 'teacher':
make response(jsonify({"message"”: "not allowed for
students"
func(*args, **kwargs

wrap

Die Funktion token required prift zunachst, ob Authorization-Header im Request vorhanden
ist. Die Daten in diesem Header werden mit jwt.decode entschlisselt und die Signatur gepruft. Falls
das Token gultig ist, wird der entsprechende User gelesen und in der globalen Collection g
gespeichert.

Die Funktion teacher required pruft lediglich die Rolle des angemeldeten Benutzers.
g steht fur global

Die Variable g steht fur ,,global“. Dabei handelt es sich um eine Collection, die wahrend eines
Requests in allen Services verfugbar ist. Dadurch kdnnen relativ einfach zentrale Daten, wie der
angemeldete Benutzer, zwischen verschiedenen Funktionen ausgetauscht werden.

M321-LU0O6

Marcel Suter

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/tag/m321-lu06?do=showtag&tag=M321-LU06
https://creativecommons.org/licenses/by-nc-sa/4.0/

Last update: 2024/03/28 14:07 modul:m321:learningunits:lu06:beispiel https://wiki.bzz.ch/modul/m321/learningunits/lu06/beispiel

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m321/learningunits/lu06/beispiel

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/ Printed on 2026/02/03 20:33

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m321/learningunits/lu06/beispiel

	LU06c - Umsetzung als Beispiel
	Frontend
	Token speichern

	Token senden
	Backend
	ExamService
	authorization.py
	g steht für global

