2026/02/02 18:19 1/3 LUO6b - Autorisation in einer Webapplikation mit JSON Web Token

LUO6b - Autorisation in einer Webapplikation
mit JSON Web Token

Token im Client

Der Client erhalt vom Authorisationsservice ein Token. Dieses muss er lokal speichern und bei jedem
Request mitsenden.

Token speichern

Ein Webbrowser als Client hat verschiedene Maglichkeiten, um Daten zu speichern. Je nach Art des
Speichers haben wir gewisse Vor- und Nachteile.

Cookies

In Cookies konnen Daten gespeichert und weitergeleitet werden. Cookies werden bei einem Request
automatisch durch den Webbrowser mitgesendet. Diese haben einen schlechten Ruf, da sie oftmals
zur Verfolgung von Benutzeraktivitaten Uber verschiedene Webseiten hinweg verwendet wurden bzw.
noch werden.

Local Storage

Auch der Local Storage bietet eine Datenablage. Im Gegensatz zu Cookies werden Werte nicht
automatisch gespeichert und gesendet. Beides muss explizit durch Javascript programmiert werden.
Die Daten im Local Storage haben kein Ablaufdatum und werden auch Uber mehrere Browser
Sessions hinweg geteilt.

Session Storage

Der Unterschied zum Local Storage besteht darin, dass Session Storage nur fir eine Browser Session
gilt. Die Daten werden automatisch geléscht, wenn die Seite geschlossen wird. Da ein
Authentifizierungs-Token sowieso nicht lange gultig ist, bietet sich aus meiner Sicht der Session
Storage als Speicherort an.

Dateien

Ein Webbrowser kann auch Daten in einer Datei auf dem Clientrechner speichern.

BZZ - Modulwiki - https://wiki.bzz.ch/



Last update: 2024/03/28 14:07 modul:m321:learningunits:lu06:flaskrestful https://wiki.bzz.ch/modul/m321/learningunits/lu06/flaskrestful

Speichern des Tokens im Session Storage

Uber den Bezeichner ,sessionStorage” kénnen wir diesen Speicher verwalten. Die Methode setItem
speichert meine Daten als Key/Value-Pair:

data
sessionStorage.setItem("token", data

Token senden

Bei jedem Request muss der Client sein Token mitsenden. Dazu wird beim Request ein zusatzlicher
Authorization-Header gesendet. In diesem Header ist es Ublich, das Schllusselwort Bearer vor
das eigentliche Token zu stellen.

token sessionStorage.getItem("token"
fetch("./?72727?"

method: "POST"

headers
"Content-Type": "application/x-www-form-urlencoded"
"Authorization": "Bearer " token

body: data

Token uberprufen

In unserer Webapplikation kdnnen wir Uber den Request-Header Authorization auf das
mitgesendete Token zugreifen. Zunachst priafen wir, ob ein Authorization-Header vorhanden ist.
Danach kénnen wir das Token ab Position 8 aus diesem Header lesen.

Wir stellen ja beim Senden das Schlisselwort Bearer vor
' das eigentliche Token. Daher mussen wir diese 7 Zeichen
© beim Verarbeiten des Tokens wieder entfernen.

Anschliessend mussen wir prifen ob das Token gultig ist. Die einzelnen Schritte sind:

1. Token mit dem geheimen Schlussel entschltsseln.
2. Prufen ob die Signatur korrekt ist.
3. Prufen ob das Ablaufdatum noch nicht erreicht ist.

Zum Gluck sind viele der komplizierteren Aufgaben in entsprechenden Bibliotheken fir uns gelést.
Schaue dir dazu das Umsetzungsbeispiel an.

https://wiki.bzz.ch/ Printed on 2026/02/02 18:19



2026/02/02 18:19 3/3 LUO6b - Autorisation in einer Webapplikation mit JSON Web Token

M321-LUO6

el Marcel Suter

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m321/learningunits/lu06/flaskrestful

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/


https://wiki.bzz.ch/tag/m321-lu06?do=showtag&tag=M321-LU06
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m321/learningunits/lu06/flaskrestful

	LU06b - Autorisation in einer Webapplikation mit JSON Web Token
	Token im Client
	Token speichern
	Cookies
	Local Storage
	Session Storage
	Dateien

	Speichern des Tokens im Session Storage
	Token senden

	Token überprüfen


