
2026/02/02 18:19 1/3 LU06b - Autorisation in einer Webapplikation mit JSON Web Token

BZZ - Modulwiki - https://wiki.bzz.ch/

LU06b - Autorisation in einer Webapplikation
mit JSON Web Token

Token im Client

Der Client erhält vom Authorisationsservice ein Token. Dieses muss er lokal speichern und bei jedem
Request mitsenden.

Token speichern

Ein Webbrowser als Client hat verschiedene Möglichkeiten, um Daten zu speichern. Je nach Art des
Speichers haben wir gewisse Vor- und Nachteile.

Cookies

In Cookies können Daten gespeichert und weitergeleitet werden. Cookies werden bei einem Request
automatisch durch den Webbrowser mitgesendet. Diese haben einen schlechten Ruf, da sie oftmals
zur Verfolgung von Benutzeraktivitäten über verschiedene Webseiten hinweg verwendet wurden bzw.
noch werden.

Local Storage

Auch der Local Storage bietet eine Datenablage. Im Gegensatz zu Cookies werden Werte nicht
automatisch gespeichert und gesendet. Beides muss explizit durch Javascript programmiert werden.
Die Daten im Local Storage haben kein Ablaufdatum und werden auch über mehrere Browser
Sessions hinweg geteilt.

Session Storage

Der Unterschied zum Local Storage besteht darin, dass Session Storage nur für eine Browser Session
gilt. Die Daten werden automatisch gelöscht, wenn die Seite geschlossen wird. Da ein
Authentifizierungs-Token sowieso nicht lange gültig ist, bietet sich aus meiner Sicht der Session
Storage als Speicherort an.

Dateien

Ein Webbrowser kann auch Daten in einer Datei auf dem Clientrechner speichern.

Last update: 2024/03/28 14:07 modul:m321:learningunits:lu06:flaskrestful https://wiki.bzz.ch/modul/m321/learningunits/lu06/flaskrestful

https://wiki.bzz.ch/ Printed on 2026/02/02 18:19

Speichern des Tokens im Session Storage

Über den Bezeichner „sessionStorage“ können wir diesen Speicher verwalten. Die Methode setItem
speichert meine Daten als Key/Value-Pair:

data = ...
sessionStorage.setItem("token", data);

Token senden

Bei jedem Request muss der Client sein Token mitsenden. Dazu wird beim Request ein zusätzlicher
Authorization-Header gesendet. In diesem Header ist es üblich, das Schlüsselwort Bearer vor
das eigentliche Token zu stellen.

token = sessionStorage.getItem("token");
fetch("./????",
 {
 method: "POST",
 headers: {
 "Content-Type": "application/x-www-form-urlencoded",
 "Authorization": "Bearer " + token
 },
 body: data
 })
...

Token überprüfen

In unserer Webapplikation können wir über den Request-Header Authorization auf das
mitgesendete Token zugreifen. Zunächst prüfen wir, ob ein Authorization-Header vorhanden ist.
Danach können wir das Token ab Position 8 aus diesem Header lesen.

Wir stellen ja beim Senden das Schlüsselwort Bearer vor
das eigentliche Token. Daher müssen wir diese 7 Zeichen
beim Verarbeiten des Tokens wieder entfernen.

Anschliessend müssen wir prüfen ob das Token gültig ist. Die einzelnen Schritte sind:

Token mit dem geheimen Schlüssel entschlüsseln.1.
Prüfen ob die Signatur korrekt ist.2.
Prüfen ob das Ablaufdatum noch nicht erreicht ist.3.

Zum Glück sind viele der komplizierteren Aufgaben in entsprechenden Bibliotheken für uns gelöst.
Schaue dir dazu das Umsetzungsbeispiel an.

2026/02/02 18:19 3/3 LU06b - Autorisation in einer Webapplikation mit JSON Web Token

BZZ - Modulwiki - https://wiki.bzz.ch/

M321-LU06

 Marcel Suter

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m321/learningunits/lu06/flaskrestful

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/tag/m321-lu06?do=showtag&tag=M321-LU06
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m321/learningunits/lu06/flaskrestful

	LU06b - Autorisation in einer Webapplikation mit JSON Web Token
	Token im Client
	Token speichern
	Cookies
	Local Storage
	Session Storage
	Dateien

	Speichern des Tokens im Session Storage
	Token senden

	Token überprüfen

