2025/11/17 14:58

1/2

Kompetenzubersicht

Kompetenzubersicht

Kompetenzband: HZ|Grundlagen Fortgeschritten Erweitert
AG1: Ich kann die
Eigenschaften von
Funktionen beschreiben |AF1: Ich kann das
(z.Bsp. pure function)  [Konzept von
und den Unterschied zu [¥Yimmutable values* . . .
: . AEL: Ich kann aufzeigen wie
anderen Programmier- |erldutern und dazu Probleme in den
Strukturen erldutern Beispiele anwenden. verschiedenen Konzepten
. , (z.Bsp. zu Prozedur). Somit kann ich dieses P
Unterschiede zwischen . . (OO0, prozedural und
: * LUOla - Deklarative  |Konzept funktionaler : .
funktionaler . . . funktional) gelést werden
. vs. Imperative Programmierung im . o
Programmierung und . ; und diese miteinander
1 |Programmierung Unterschied zu )
anderen . vergleichen.
. . * LUO1b - Strukturierte |anderen
Programmierparadigmen . . » LUO2d - By Value und By
. Programmierung Programmiersprachen ;
aufzeigen. ; . ; Reference in Python
* LUOLc - Funktionale |erklaren (z.Bsp. im « LUO2e - By Value und B
Programmierung Vergleich zu Ref by D | y
* LUO2a - referenzierten ederebr!ci €l aPtachasses
Grundkonzepte der Objekten) und Objekten in Python
funktionalen * LUO2c¢ - Immutable
Programmierung Values
* LUO2b - Pure
Functions
BG1: Ich kann den ,
Unterschied zwischen  |BF1: Ich kann den 2551.dlecrhirl;anenr;?\l:glr']derungen
Anforderungen der Endzustand als Pro rammi%run in
imperativen Anforderung im Sinne g g
: . Anforderungen der
A Programmierung der deklarativen .
nforderungen und - ; deklarativen
X . 1 |(definierte Folge von Programmierung ;
Design beschreiben . . Programmierung
Handlungsanweisungen)|beschreiben. (Das .
) . . |transferieren. (,klar
und der deklarativen gewdtinschte Ergebnis definierte Abfolae”
Programmierung wird beschrieben statt . 9
. . . . transformieren zu
(Beschreibung des die Arbeitsschritte.) End bnis beschreiben”
Endzustandes) erklaren. ~Endergebnis beschreiben®)
BG2: Ich kann Elemente |BF2: Ich kann fur eine BE2: Ich kann ein Desian
des Functional Design  |Problemstellung ein eine.r imperativen g
erklaren. (zBsp. Functional-Design Pro ramFr)nierun in ein
Immutable data types, |entwerfen und dabei Des%n der deklgrativen
model, solution, domain |die Elemente des Pro ragmmierun
of interest, constructors, |[Functional Designs gram 9
transferieren.
composable operators) [anwenden.
Funktionale CG1: Ich kann ein grlc;rligarrl:gri]n CE1l: Ich kann Funktionen in
Programmierung 2 |Algorithmus erklaren gor o zusammenhangende
funktionale Teilstlcke X . .
umsetzen * LUOLd - Trace Table aufteilen Algorithmen implementieren.
CG2: Ich kann gEiLgfohnlé?\naqs CE2: Ich kann Funktionen als
Funktionen als Objekte |Argumente flr andere \?::\?vlétrfdiﬂd lfr;glggnnfnrsxe
behandeln und diese in [Funktionen T P
. . Aufgaben zu l6sen und den
Variablen speichern und |verwenden und Code sauberer und
weitergeben. dadurch hdherwertige offizienter zu gestalten
* LUO3d - First-Class Funktionen erstellen. |, LUO03d - Firsg—CIass '
Functions * LUO3d - First-Class )
Functions Functions

BZZ - Modulwiki - https://wiki.bzz.ch/


https://wiki.bzz.ch/modul/m323/learningunits/lu01/deklarativimperativ
https://wiki.bzz.ch/modul/m323/learningunits/lu01/deklarativimperativ
https://wiki.bzz.ch/modul/m323/learningunits/lu01/deklarativimperativ
https://wiki.bzz.ch/modul/m323/learningunits/lu01/strukturiert
https://wiki.bzz.ch/modul/m323/learningunits/lu01/strukturiert
https://wiki.bzz.ch/modul/m323/learningunits/lu01/funktional
https://wiki.bzz.ch/modul/m323/learningunits/lu01/funktional
https://wiki.bzz.ch/modul/m323/learningunits/lu02/grundkonzepte
https://wiki.bzz.ch/modul/m323/learningunits/lu02/grundkonzepte
https://wiki.bzz.ch/modul/m323/learningunits/lu02/grundkonzepte
https://wiki.bzz.ch/modul/m323/learningunits/lu02/grundkonzepte
https://wiki.bzz.ch/modul/m323/learningunits/lu02/purefunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu02/purefunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu02/immutablevalues
https://wiki.bzz.ch/modul/m323/learningunits/lu02/immutablevalues
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byvaluebyreference
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byvaluebyreference
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses
https://wiki.bzz.ch/modul/m323/learningunits/lu01/tracetable
https://wiki.bzz.ch/modul/m323/learningunits/lu03/firstclassfunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu03/firstclassfunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu03/firstclassfunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu03/firstclassfunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu03/firstclassfunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu03/firstclassfunctions

Last update: 2025/11/17 13:36

modul:m323:kompetenzuebersicht https://wiki.bzz.ch/modul/m323/kompetenzuebersicht

Kompetenzband:

HZ

Grundlagen

Fortgeschritten

Erweitert

CG3: Ich kann einfache
Lambda-Ausdriicke
schreiben, die eine
einzelne Operation
durchfiahren, z.B. das
Quadrieren einer Zahl
oder das Konvertieren
eines Strings in
GroBbuchstaben.

CF3: Ich kann
Lambda-Ausdriicke
schreiben, die
mehrere Argumente
verarbeiten koénnen.

CE3: Ich kann Lambda-
Ausdricke verwenden, um
den Programmfluss zu
steuern, z.B. durch Sortieren
von Listen basierend auf
benutzerdefinierten
Kriterien.

CG4: Ich kann die
Funktionen Map, Filter
und Reduce einzeln auf
Listen anwenden.

CF4: 1. Ich kann Map,
Filter und Reduce
kombiniert
verwenden, um Daten
zu verarbeiten und zu
manipulieren, die
komplexere
Transformationen
erfordern.

CE4: 1. Ich kann Map, Filter
und Reduce verwenden, um
komplexe
Datenverarbeitungsaufgaben
zu ldsen, wie z.B. die
Aggregation von Daten oder
die Transformation von
Datenstrukturen.

Refactoring und

DG1:lch kann einige
Refactoring-Techniken

DF1:lch kann mit
Refactoring-Techniken

DE1l:Ich kann die
Auswirkungen des
Refactorings auf das
Verhalten des Codes

bestehenden Code 3,4laufzahlen, die einen einen Code lesbarer |einschatzen und
optimieren Code lesbarer und und verstandlicher sicherstellen, dass das
verstandlicher machen. [machen. Refactoring keine
unerwunschten
Nebeneffekte hat.
DG2: Ich kann DF2:Ich kann DE2: Ich kann effiziente
allgemeine vorgegebene Algorithmen, Techniken oder
Massnahmen zur Massnah-men zur Datenstrukturen auswahlen
Verbesserung der Leis- |Verbesserung der und einsetzen, um die
tung von Code Leistung von Code Leistung von Code zu ver-
aufzahlen. umsetzen. bessern.
From:

https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

https://wiki.bzz.ch/modul/m323/kompetenzuebersicht

Last update: 2025/11/17 13:36

https://wiki.bzz.ch/

Printed on 2025/11/17 14:58


https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/kompetenzuebersicht

	Kompetenzübersicht

