
2025/11/17 14:58 1/2 Kompetenzübersicht

BZZ - Modulwiki - https://wiki.bzz.ch/

Kompetenzübersicht
Kompetenzband: HZ Grundlagen Fortgeschritten Erweitert

Unterschiede zwischen
funktionaler
Programmierung und
anderen
Programmierparadigmen
aufzeigen.

1

AG1: Ich kann die
Eigenschaften von
Funktionen beschreiben
(z.Bsp. pure function)
und den Unterschied zu
anderen Programmier-
Strukturen erläutern
(z.Bsp. zu Prozedur).
• LU01a - Deklarative
vs. Imperative
Programmierung
• LU01b - Strukturierte
Programmierung
• LU01c - Funktionale
Programmierung
• LU02a -
Grundkonzepte der
funktionalen
Programmierung
• LU02b - Pure
Functions

AF1: Ich kann das
Konzept von
*immutable values*
erläutern und dazu
Beispiele anwenden.
Somit kann ich dieses
Konzept funktionaler
Programmierung im
Unterschied zu
anderen
Programmiersprachen
erklären (z.Bsp. im
Vergleich zu
referenzierten
Objekten)
• LU02c - Immutable
Values

AE1: Ich kann aufzeigen wie
Probleme in den
verschiedenen Konzepten
(OO, prozedural und
funktional) gelöst werden
und diese miteinander
vergleichen.
• LU02d - By Value und By
Reference in Python
• LU02e - By Value und By
Reference bei Dataclasses
und Objekten in Python

Anforderungen und
Design beschreiben 1

BG1: Ich kann den
Unterschied zwischen
Anforderungen der
imperativen
Programmierung
(definierte Folge von
Handlungsanweisungen)
und der deklarativen
Programmierung
(Beschreibung des
Endzustandes) erklären.

BF1: Ich kann den
Endzustand als
Anforderung im Sinne
der deklarativen
Programmierung
beschreiben. (Das
gewünschte Ergebnis
wird beschrieben statt
die Arbeitsschritte.)

BE1: Ich kann Anforderungen
aus der imperativen
Programmierung in
Anforderungen der
deklarativen
Programmierung
transferieren. („klar
definierte Abfolge“
transformieren zu
„Endergebnis beschreiben“)

BG2: Ich kann Elemente
des Functional Design
erklären. (zBsp.
Immutable data types,
model, solution, domain
of interest, constructors,
composable operators)

BF2: Ich kann für eine
Problemstellung ein
Functional-Design
entwerfen und dabei
die Elemente des
Functional Designs
anwenden.

BE2: Ich kann ein Design
einer imperativen
Programmierung in ein
Desing der deklarativen
Programmierung
transferieren.

Funktionale
Programmierung
umsetzen

2
CG1: Ich kann ein
Algorithmus erklären
• LU01d - Trace Table

CF1: Ich kann
Algorithmen in
funktionale Teilstücke
aufteilen

CE1: Ich kann Funktionen in
zusammenhängende
Algorithmen implementieren.

CG2: Ich kann
Funktionen als Objekte
behandeln und diese in
Variablen speichern und
weitergeben.
• LU03d - First-Class
Functions

CF2: Ich kann
Funktionen als
Argumente für andere
Funktionen
verwenden und
dadurch höherwertige
Funktionen erstellen.
• LU03d - First-Class
Functions

CE2: Ich kann Funktionen als
Objekte und Argumente
verwenden, um komplexe
Aufgaben zu lösen und den
Code sauberer und
effizienter zu gestalten.
• LU03d - First-Class
Functions

https://wiki.bzz.ch/modul/m323/learningunits/lu01/deklarativimperativ
https://wiki.bzz.ch/modul/m323/learningunits/lu01/deklarativimperativ
https://wiki.bzz.ch/modul/m323/learningunits/lu01/deklarativimperativ
https://wiki.bzz.ch/modul/m323/learningunits/lu01/strukturiert
https://wiki.bzz.ch/modul/m323/learningunits/lu01/strukturiert
https://wiki.bzz.ch/modul/m323/learningunits/lu01/funktional
https://wiki.bzz.ch/modul/m323/learningunits/lu01/funktional
https://wiki.bzz.ch/modul/m323/learningunits/lu02/grundkonzepte
https://wiki.bzz.ch/modul/m323/learningunits/lu02/grundkonzepte
https://wiki.bzz.ch/modul/m323/learningunits/lu02/grundkonzepte
https://wiki.bzz.ch/modul/m323/learningunits/lu02/grundkonzepte
https://wiki.bzz.ch/modul/m323/learningunits/lu02/purefunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu02/purefunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu02/immutablevalues
https://wiki.bzz.ch/modul/m323/learningunits/lu02/immutablevalues
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byvaluebyreference
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byvaluebyreference
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses
https://wiki.bzz.ch/modul/m323/learningunits/lu01/tracetable
https://wiki.bzz.ch/modul/m323/learningunits/lu03/firstclassfunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu03/firstclassfunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu03/firstclassfunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu03/firstclassfunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu03/firstclassfunctions
https://wiki.bzz.ch/modul/m323/learningunits/lu03/firstclassfunctions


Last update: 2025/11/17 13:36 modul:m323:kompetenzuebersicht https://wiki.bzz.ch/modul/m323/kompetenzuebersicht

https://wiki.bzz.ch/ Printed on 2025/11/17 14:58

Kompetenzband: HZ Grundlagen Fortgeschritten Erweitert
CG3: Ich kann einfache
Lambda-Ausdrücke
schreiben, die eine
einzelne Operation
durchführen, z.B. das
Quadrieren einer Zahl
oder das Konvertieren
eines Strings in
Großbuchstaben.

CF3: Ich kann
Lambda-Ausdrücke
schreiben, die
mehrere Argumente
verarbeiten können.

CE3: Ich kann Lambda-
Ausdrücke verwenden, um
den Programmfluss zu
steuern, z.B. durch Sortieren
von Listen basierend auf
benutzerdefinierten
Kriterien.

CG4: Ich kann die
Funktionen Map, Filter
und Reduce einzeln auf
Listen anwenden.

CF4: 1. Ich kann Map,
Filter und Reduce
kombiniert
verwenden, um Daten
zu verarbeiten und zu
manipulieren, die
komplexere
Transformationen
erfordern.

CE4: 1. Ich kann Map, Filter
und Reduce verwenden, um
komplexe
Datenverarbeitungsaufgaben
zu lösen, wie z.B. die
Aggregation von Daten oder
die Transformation von
Datenstrukturen.

Refactoring und
bestehenden Code
optimieren

3,4

DG1:Ich kann einige
Refactoring-Techniken
aufzählen, die einen
Code lesbarer und
verständlicher machen.

DF1:Ich kann mit
Refactoring-Techniken
einen Code lesbarer
und verständlicher
machen.

DE1:Ich kann die
Auswirkungen des
Refactorings auf das
Verhalten des Codes
einschätzen und
sicherstellen, dass das
Refactoring keine
unerwünschten
Nebeneffekte hat.

DG2: Ich kann
allgemeine
Massnahmen zur
Verbesserung der Leis-
tung von Code
aufzählen.

DF2:Ich kann
vorgegebene
Massnah-men zur
Verbesserung der
Leistung von Code
umsetzen.

DE2: Ich kann effiziente
Algorithmen, Techniken oder
Datenstrukturen auswählen
und einsetzen, um die
Leistung von Code zu ver-
bessern.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/kompetenzuebersicht

Last update: 2025/11/17 13:36

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/kompetenzuebersicht

	Kompetenzübersicht

