2026/01/19 17:52

1/2

Kompetenzubersicht

Kompetenzubersicht

Kompetenzband: HZ

Grundlagen

Fortgeschritten

Erweitert

Unterschiede zwischen
funktionaler
Programmierung und

AG1: Ich kann die
Eigenschaften von
Funktionen beschreiben
(z.Bsp. pure function)

AF1: Ich kann das
Konzept von
immutable values
erlautern und dazu
Beispiele anwenden.
Somit kann ich dieses
Konzept funktionaler

AEL: Ich kann aufzeigen wie
Probleme in den
verschiedenen Konzepten

1 . Programmierung im |(OO, prozedural und
anderen und den Unterschied zu . ! "
. . , Unterschied zu funktional) gelést werden
Programmierparadigmen anderen Programmier- . o
. . anderen und diese miteinander
aufzeigen. Strukturen erldutern .)
Programmiersprachen |vergleichen.
(z.Bsp. zu Prozedur). . .
erklaren (z.Bsp. im
Vergleich zu
referenzierten
Objekten)
BG1: Ich kann den
Unterschied zwischen |BF1: Ich kann den BEL: Ich'kann Anforderungen
aus der imperativen
Anforderungen der Endzustand als : .
. . . . Programmierung in
imperativen Anforderung im Sinne
: . Anforderungen der
Programmierung der deklarativen :
Anforderungen und - : deklarativen
X . 1 |(definierte Folge von Programmierung ;
Design beschreiben . . Programmierung
Handlungsanweisungen)|beschreiben. (Das .
) N . |transferieren. (,klar
und der deklarativen gewtinschte Ergebnis e "
i ; i definierte Abfolge
Programmierung wird beschrieben statt ,
. . . . transformieren zu
(Beschreibung des die Arbeitsschritte.) . —
R »Endergebnis beschreiben”)
Endzustandes) erklaren.
BG2: Ich kann Elemente |BF2: Ich kann flr eine _ . .
) . . BE2: Ich kann ein Design
des Functional Design |Problemstellung ein I .
. : . einer imperativen
erklaren. (zBsp. Functional-Design . L
. |Programmierung in ein
Immutable data types, |entwerfen und dabei 7 ,
. .| Desing der deklarativen
model, solution, domain |die Elemente des .
. . . Programmierung
of interest, constructors, |[Functional Designs X
transferieren.
composable operators) [anwenden.
Funktionale . CIF: I.Ch kanr) C1E: Ich kann Funktionen in
. C1G: Ich kann ein Algorithmen in "
Programmierung 2 . - . I zusammenhangende
Algorithmus erklaren funktionale Teilstucke . . .
umsetzen Algorithmen implementieren

aufteilen

C2G: Ich kann
Funktionen als Objekte
behandeln und diese in
Variablen speichern und
weitergeben.

C2F: Ich kann
Funktionen als
Argumente flr andere
Funktionen
verwenden und
dadurch héherwertige
Funktionen erstellen.

C2E: Ich kann Funktionen als
Objekte und Argumente
verwenden, um komplexe
Aufgaben zu l6sen und den
Code sauberer und
effizienter zu gestalten.

C3G: Ich kann einfache
Lambda-Ausdriicke
schreiben, die eine
einzelne Operation
durchfahren, z.B. das
Quadrieren einer Zahl
oder das Konvertieren
eines Strings in
GroBbuchstaben.

C3F: Ich kann
Lambda-Ausdriicke
schreiben, die
mehrere Argumente
verarbeiten konnen.

C3E: Ich kann Lambda-
Ausdricke verwenden, um
den Programmfluss zu
steuern, z.B. durch Sortieren
von Listen basierend auf
benutzerdefinierten
Kriterien.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2025/11/13 09:55 modul:m323:kompetenzuebersicht https://wiki.bzz.ch/modul/m323/kompetenzuebersicht?rev=1763024136

Kompetenzband:

HZ

Grundlagen

Fortgeschritten

Erweitert

C4G: Ich kann die
Funktionen Map, Filter
und Reduce einzeln auf
Listen anwenden.

C4F: 1. Ich kann Map,
Filter und Reduce
kombiniert
verwenden, um Daten
zu verarbeiten und zu
manipulieren, die
komplexere
Transformationen
erfordern.

C4E: 1. Ich kann Map, Filter
und Reduce verwenden, um
komplexe
Datenverarbeitungsaufgaben
zu lésen, wie z.B. die
Aggregation von Daten oder
die Transformation von
Datenstrukturen.

Refactoring und

DG1:lch kann einige
Refactoring-Techniken

DF1:lch kann mit
Refactoring-Techniken

DE1:lch kann die
Auswirkungen des
Refactorings auf das
Verhalten des Codes

bestehenden Code 3,4|aufzahlen, die einen einen Code lesbarer |einschatzen und
optimieren Code lesbarer und und verstandlicher sicherstellen, dass das
verstandlicher machen. |machen. Refactoring keine
unerwinschten Nebenef-
fekte hat.
DG2: Ich kann DF2:lch kann DE2: Ich kann effiziente
allgemeine vorgegebene Algorithmen, Techniken oder
Massnahmen zur Massnah-men zur Datenstrukturen auswahlen
Verbesserung der Leis- |Verbesserung der und einsetzen, um die
tung von Code Leistung von Code Leistung von Code zu ver-
aufzahlen. umsetzen. bessern.
From:

https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

https://wiki.bzz.ch/modul/m323/kompetenzuebersicht?rev=1763024136

Last update: 2025/11/13 09:55

https://wiki.bzz.ch/

Printed on 2026/01/19 17:52

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/kompetenzuebersicht?rev=1763024136

	Kompetenzübersicht

