2026/02/03 14:10 1/4 LUO1.A03 - Funktionaler Bubblesort - Erweiterte Aufgabenstellung

LUO1.A03 - Funktionaler Bubblesort -
Erweiterte Aufgabenstellung

Ablauf

Schritt 1: Verstandnis des Bubble-Sort-Algorithmus

Bubble-Sort ist ein einfacher Sortieralgorithmus, der benachbarte Elemente vergleicht und sie
vertauscht, wenn sie in der falschen Reihenfolge sind. Der Prozess wird wiederholt, bis keine
Vertauschungen mehr erforderlich sind.

Beispiel:

Unsortierte Liste: [5, 2, 9, 1, 5, 6]

Nach dem ersten Durchlauf: [2, 5, 1, 5, 6, 9] (grofSte Zahl ist an der letzten Stelle)

Schritt 2: Grundkonzept der Funktionalen Programmierung

In der funktionalen Programmierung sind Daten unveranderlich, und Operationen werden als
Funktionen ohne Seiteneffekte dargestellt. Wir missen den Bubble-Sort-Prozess als Rekursion mit
Unveranderlichkeit darstellen.

Schritt 3: Erstellen einer Rekursiven Funktion

Die Herausforderung bei der Implementierung eines rekursiven Bubble-Sort-Algorithmus besteht
darin, die typische iterative Struktur, die wir in einem Bubble-Sort sehen, in eine rekursive Struktur
umzuwandeln. Das Ziel ist es, einen Durchlauf des Bubble-Sort-Prozesses als rekursive Funktion
darzustellen, wobei die Unveranderlichkeit im Sinne der funktionalen Programmierung gewahrt bleibt.

Verstandnis des rekursiven Durchlaufs

e Basisfall: Wenn die Liste ein Element oder leer ist, wird die Liste selbst zurickgegeben, da
keine Sortierung erforderlich ist.

e Rekursive Falle: Die rekursive Funktion wird aufgerufen, indem zwei benachbarte Elemente
verglichen und ggf. vertauscht werden. Dann wird der Rest der Liste rekursiv durch die gleiche
Funktion bearbeitet.

Beispiel:

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2024/03/28
14:07

Unsortierte Liste: [5, 2, 9, 1, 5, 6]

modul:m323:learningunits:lu01:aufgaben:funktionalerbubblesortmitcode https://wiki.bzz.ch/modul/m323/learningunits/lu01/aufgaben/funktionalerbubblesortmitcode

Wenn wir die Funktion mit dieser Liste aufrufen, Uberprufen wir das erste und das zweite Element (5
und 2). Da 5 groRBer als 2 ist, vertauschen wir sie.

Dann rufen wir die Funktion rekursiv auf mit [5] + restliche liste auf, wobei die restliche Liste
durch die gleiche Funktion bearbeitet wird.

bubble pass(lst

len(1lst
st
lst st
lst + bubble pass(|1lst + st
lst + bubble pass(lst

Funktionsweise:

e Basisfall: Wenn die Lange der Liste weniger oder gleich 1 ist, wird die Liste zuriickgegeben.

e Vergleichen und Vertauschen: Wenn das erste Element groRer als das zweite ist, werden sie
vertauscht. Dann wird die Funktion rekursiv mit dem vertauschten Element und dem Rest der
Liste aufgerufen.

* Vergleichen ohne Vertauschen: Wenn das erste Element nicht groBer als das zweite ist, wird
die Funktion rekursiv mit dem gleichen ersten Element und dem Rest der Liste aufgerufen.

¢ Ruckkehr der sortierten Liste: Durch das wiederholte rekursive Aufrufen wird die sortierte
Liste schrittweise aufgebaut und schlief8lich zurlickgegeben.

Dieser rekursive Ansatz ermaglicht es, einen Durchlauf des Bubble-Sort-Prozesses funktional und
unveranderlich darzustellen, wobei jeder rekursive Aufruf einen Teil der Liste sortiert. Der Algorithmus
geht weiter, indem er den Prozess auf dem Rest der Liste wiederholt, bis die gesamte Liste sortiert ist.

Schritt 4: Implementierung des Gesamten Bubble-Sort

Nachdem wir im vorherigen Schritt eine Funktion fur einen einzelnen Durchlauf von Bubble Sort
erstellt haben, mlssen wir nun eine weitere rekursive Funktion erstellen, die diesen Durchlauf so oft
aufruft, bis die Liste vollstandig sortiert ist.

Erstellung einer Rekursiven Funktion fiir den gesamten Bubble Sort:

e Basisfall: Wenn die GroRe n der unsortierten Teilliste gleich 1 ist, wird die gesamte Liste
zurlckgegeben, da sie bereits sortiert ist.

¢ Rekursive Falle: Wenn die GréRe n der unsortierten Teilliste groBer als 1 ist, wird die
bubble pass Funktion aufgerufen, um einen Durchlauf des Bubble-Sort-Prozesses auf der
Liste auszufuhren. Anschlieend wird die Funktion bubble sort rekursiv aufgerufen, wobei die
Groe n um 1 verringert wird.

bubble pass(lst
Code aus Schritt 3

https://wiki.bzz.ch/ Printed on 2026/02/03 14:10

2026/02/03 14:10 3/4 LUO1.A03 - Funktionaler Bubblesort - Erweiterte Aufgabenstellung

bubble sort(lst, n-=None):
n None:
n = len(lst
n .
st
lst = bubble pass(lst
bubble sort(lst, n-

Funktionsweise:

Basisfall: Wenn die unsortierte GroRRe der Liste 1 ist, ist die Liste sortiert, und wir geben sie zurtck.
Durchlauf eines Bubble-Sort-Prozesses: Wir rufen die bubble pass Funktion auf, um einen Durchlauf
des Bubble-Sort-Prozesses durchzufuhren, bei dem die benachbarten Elemente verglichen und
vertauscht werden, falls erforderlich. Rekursiver Aufruf: Nachdem ein Durchlauf abgeschlossen ist,
rufen wir die bubble sort Funktion rekursiv auf und verringern die GrofSe n um 1, um die Sortierung
fortzusetzen. Ruckkehr der sortierten Liste: Die rekursiven Aufrufe setzen sich fort, bis die unsortierte
GroRe der Liste 1 erreicht. Zu diesem Zeitpunkt wird die vollstandig sortierte Liste zurickgegeben.
Diese rekursive Herangehensweise stellt sicher, dass die Liste schrittweise sortiert wird, wobei jeder
rekursive Aufruf der bubble sort Funktion einen weiteren Durchlauf des Sortierprozesses
durchfuhrt. Durch die Kombination der beiden rekursiven Funktionen bubble pass und

bubble sort wird ein funktionaler und unveranderlicher Ansatz zur Implementierung des Bubble-
Sort-Algorithmus erreicht.

Schritt 5: Testen der Implementierung

Abschlieend sollten Sie lhre Implementierung mit verschiedenen Listen testen, um sicherzustellen,
dass sie korrekt funktioniert.

Beispiel:

__hame __main_ ':
unsorted list
sorted list = bubble sort(unsorted list

sorted list) # Ausgabe: [1, 2, 5, 5, 6, 9]

Zusammenfassung:

Diese Aufgabe demonstriert, wie der Bubble-Sort-
Algorithmus unter Verwendung der funktionalen

. Programmierprinzipien von Rekursion und

- Unveranderlichkeit implementiert werden kann. Es zeigt
auch, wie funktionaler Code oft aus kleineren Funktionen
zusammengesetzt wird, die jeweils eine spezifische Aufgabe
erflllen.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2024/03/28
14:07

modul:m323:learningunits:lu01:aufgaben:funktionalerbubblesortmitcode https://wiki.bzz.ch/modul/m323/learningunits/lu01/aufgaben/funktionalerbubblesortmitcode

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: L, R
https://wiki.bzz.ch/modul/m323/learningunits/lu01/aufgaben/funktionalerbubblesortmitcode gl s

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/ Printed on 2026/02/03 14:10

https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu01/aufgaben/funktionalerbubblesortmitcode

	LU01.A03 - Funktionaler Bubblesort - Erweiterte Aufgabenstellung
	Ablauf
	Schritt 1: Verständnis des Bubble-Sort-Algorithmus
	Beispiel:

	Schritt 2: Grundkonzept der Funktionalen Programmierung
	Schritt 3: Erstellen einer Rekursiven Funktion
	Verständnis des rekursiven Durchlaufs
	Beispiel:
	Funktionsweise:

	Schritt 4: Implementierung des Gesamten Bubble-Sort
	Erstellung einer Rekursiven Funktion für den gesamten Bubble Sort:
	Funktionsweise:

	Schritt 5: Testen der Implementierung

