LU01.A07 - Rekursiver GGT und Trace Table

Implementieren Sie den rekursiven Algorithmus zur Berechnung des größten gemeinsamen Teilers (GGT) und erstellen Sie einen Trace Table, um den rekursiven Ablauf zu analysieren.

Erklärung des rekursiven GGT-Algorithmus:

Der größte gemeinsame Teiler (GGT) zweier Zahlen ist der größte positive Divisor, der beide Zahlen ohne Rest teilt. Der rekursive GGT-Algorithmus basiert auf dem Euklidischen Algorithmus, der besagt, dass der GGT von zwei Zahlen a und b der gleiche ist wie der GGT von b und dem Rest der Division von a durch b. Die Rekursion endet, wenn einer der Werte 0 erreicht.

Anforderungen:

- Verwenden Sie den folgenden rekursiven Algorithmus zur Berechnung des GGT.
- Erstellen Sie einen Trace Table, um die Änderung der Variablen und den Ablauf der Rekursion nachzuvollziehen.

Algorithmus

```
def ggt(a, b):
    if b == 0:
        return a
    else:
        return ggt(b, a % b)

# Beispielwerte
a = 48
b = 18
ergebnis = ggt(a, b)
print(f'GGT von {a} und {b} ist: {ergebnis}')
```

Aufgabe:

- Analysieren Sie den Code Schritt für Schritt.
- Erstellen Sie einen Trace Table, der die Variablen a, b und den rekursiven Aufruf ggt (b, a % b) darstellt.
- Verwenden Sie die folgende Struktur für den Trace Table:

Schritt a b a % b Rekursiver Aufruf (ggt(b, a % b)) Rückgabewert

Füllen Sie den Trace Table basierend auf dem angegebenen Beispiel aus.

Beispielinput:

a = 48

b = 18

Beispieloutput:

GGT von 48 und 18 ist: 6

Beispiel für den Trace Table:

Schritt	a	b	a % b	Rekursiver Aufruf	Rückgabewert
	_	_			
1	48	18	12	ggt(18, 12)	-
2	18	12	6	ggt(12, 6)	-
3	12	6	0	ggt(6, 0)	-
4	6	0	-	-	6

Erklärung des Trace Tables:

- **Schritt 1**: Die Funktion wird mit a = 48 und b = 18 aufgerufen. Da b nicht 0 ist, erfolgt ein rekursiver Aufruf mit den neuen Werten ggt (18, 12).
- **Schritt 2**: Der Algorithmus wird nun mit a = 18 und b = 12 ausgeführt, was zu einem weiteren rekursiven Aufruf ggt (12, 6) führt.
- Schritt 3: Im nächsten Schritt sind die Werte a = 12 und b = 6. Es wird erneut rekursiv ggt(6, 0) aufgerufen.
- Schritt 4: Da b = 0 ist, wird der Wert von a zurückgegeben, was in diesem Fall 6 ist. Dies beendet die Rekursion und gibt den Wert zurück.

Hinweis: Verwenden Sie den Trace Table, um den rekursiven Ablauf des GGT-Algorithmus nachzuvollziehen und das Verständnis für die Funktionsweise der Rekursion zu vertiefen.

https://wiki.bzz.ch/ Printed on 2025/11/23 14:42 From:

https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

https://wiki.bzz.ch/modul/m323/learningunits/lu01/aufgaben/tracetable2?rev=1722956425

Last update: 2024/08/06 17:00

