2026/02/12 16:47 1/2 LUOla - Deklarative vs. Imperative Programmierung

LUOla - Deklarative vs. Imperative
Programmierung

Einfuhrung

Programmierung kann auf verschiedene Weisen verstanden und ausgefuhrt werden. Die Art und
Weise, wie ein Programm geschrieben wird, kann in zwei Hauptkategorien unterteilt werden:
Imperative Programmierung und Deklarative Programmierung. Beide haben ihre eigenen Vor- und
Nachteile und werden fur verschiedene Arten von Problemen verwendet.

Imperative Programmierung

Imperative Programmierung wird oft als die traditionellste Art der Programmierung betrachtet. Sie ist
eine Art Anweisungsliste oder Rezept, das dem Computer sagt, was er tun soll.

1. Schritt-fur-Schritt-Ansatz: Der Programmierer gibt eine genaue Sequenz von Anweisungen,
die in einer bestimmten Reihenfolge ausgefuhrt werden sollen.

2. Statusverwaltung: Der Zustand des Programms wird haufig durch Variablen verandert, die
Werte speichern und andern.

3. Kontrollstrukturen: Schleifen und bedingte Anweisungen werden verwendet, um die Kontrolle
Uber den Programmablauf zu steuern.

4. Beispiel: Ein Sortieralgorithmus wie Bubble Sort, der jeden Schritt im Detail beschreibt.

Deklarative Programmierung

Deklarative Programmierung ist eher eine Art, dem Computer zu sagen, was er erreichen soll, ohne zu
beschreiben, wie er es tun soll.

1. Was, nicht Wie: Der Schwerpunkt liegt auf dem, was erreicht werden soll, nicht auf dem, wie
es erreicht werden soll.

2. Keine Seiteneffekte: Die Funktionen haben keine Nebeneffekte, d.h., sie andern nichts in der
Welt auBerhalb der Funktion.

3. Hohere Abstraktion: Oft wird ein héheres Abstraktionsniveau verwendet, das komplexere
Operationen in einfacheren Ausdrucken darstellt.

4. Beispiel: Eine SQL-Abfrage, die beschreibt, was man von einer Datenbank mochte, ohne die
Schritte zur Erlangung dieser Informationen zu beschreiben.

Vergleich

e Kontrolle vs. Abstraktion: Wahrend die imperative Programmierung eine prazise Kontrolle
uber das ,Wie" der Problemldsung bietet, ermdglicht die deklarative Programmierung eine
hohere Abstraktion Uber das ,Was".

BZZ - Modulwiki - https://wiki.bzz.ch/



Last

;ggi}gg/zs modul:m323:learningunits:lu01:deklarativimperativ https://wiki.bzz.ch/modul/m323/learningunits/lu01/deklarativimperativ?rev=1711631267

14:07

¢ Lesbarkeit: Deklarative Programme sind oft kurzer und leichter zu verstehen, wahrend
imperative Programme detaillierter sind.

« Effizienz: Imperative Programme kdnnen oft effizienter sein, da der Programmierer die genaue
Kontrolle hat. Deklarative Programme sind moglicherweise weniger effizient, aber schneller zu
schreiben und zu warten.

¢ Fehleranfalligkeit: Der detaillierte Charakter der imperativen Programmierung kann
fehleranfalliger sein, da mehr Mdglichkeiten fur menschliche Fehler bestehen.

Schlussfolgerung

Wahrend die imperative Programmierung den Programmierern die vollstandige Kontrolle Gber den
Prozess gibt, bietet die deklarative Programmierung eine elegante und oft intuitivere Methode zur
Losung von Problemen. Die Wahl zwischen diesen Stilen hangt oft von der Art des Problems, den
Anforderungen an die Effizienz und die Vorlieben des Programmierers ab. In der modernen
Softwareentwicklung werden oft Elemente beider Stile kombiniert, um eine effiziente und wartbare
Ldsung zu schaffen.

M323-LUO1

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent I|nk

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/ Printed on 2026/02/12 16:47


https://wiki.bzz.ch/tag/m323-lu01?do=showtag&tag=M323-LU01
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu01/deklarativimperativ?rev=1711631267

	LU01a - Deklarative vs. Imperative Programmierung
	Einführung
	Imperative Programmierung
	Deklarative Programmierung
	Vergleich
	Schlussfolgerung


