2026/02/03 20:33 1/4 LUO1d - Trace Table

LUO1d - Trace Table

Trace Tables sind ein unverzichtbares Werkzeug in der Programmierung, insbesondere beim
Debugging und der Analyse von Algorithmen. Sie ermdglichen es, den Zustand eines Programms
Schritt far Schritt zu verfolgen und dadurch den Ablauf eines Programms oder einer Funktion
nachvollziehbar zu machen. Dies ist besonders hilfreich, um logische Fehler zu identifizieren oder den
Lernprozess bei der Programmierung zu unterstitzen.

Was ist ein Trace Table?

Ein Trace Table, auch als Verfolgungstabelle oder Ablaufverfolgung bekannt, ist eine tabellarische
Darstellung, die den Zustand eines Programms nach jedem Ausflhrungsschritt zeigt. Er listet die
relevanten Variablen und Zustande auf, die sich wahrend der Programmausfiuhrung andern, und
dokumentiert so den exakten Ablauf des Programms.

Aufbau eines Trace Tables

Ein Trace Table besteht in der Regel aus den folgenden Komponenten:

¢ Schritt: Diese Spalte nummeriert die einzelnen Programmschritte, um die Abfolge der
Ausfuhrung darzustellen.

e Anweisung: Hier wird die aktuell ausgeflihrte Anweisung oder der Befehl festgehalten.

e Variablen: Fur jede relevante Variable gibt es eine eigene Spalte, in der ihr Wert nach jedem
Programmschritt notiert wird.

e Bedingungen: Wenn das Programm Kontrollstrukturen wie if-Anweisungen oder Schleifen
enthalt, werden hier die Bedingungen und ihre Auswertungen dokumentiert.

e Kommentare: Zusatzliche Kommentare oder Erklarungen, die den Ablauf oder besondere
Ereignisse im Code verdeutlichen, kébnnen hier vermerkt werden.

Beispiel eines Trace Tables

Betrachten wir ein erweitertes Beispiel, das eine einfache Implementierung des Bubble-Sort-
Algorithmus zeigt:

zahlen
i range(len(zahlen
j range len(zahlen)-1i-
zahlen!|j zahlen| j+
zahlen|j zahlen|j+ zahlen| j+ zahlen|j

Ein entsprechender Trace Table kénnte wie folgt aussehen:

Schritt|i |j |zahlen[j]|zahlen[j+1] Vergleich (zahlen[j] > zahlen[j+1]) Array-Zustand
1 0/0/4 3 Ja [3,4,1, 2]

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2025/11/17 13:37 modul:m323:learningunits:lu0l:tracetable https://wiki.bzz.ch/modul/m323/learningunits/lu01/tracetable

Schritt|i |j |zahlen[j]|zahlen[j+1] Vergleich (zahlen[j] > zahlen[j+1]) Array-Zustand
2 0[1/4 1 Ja [3,1,4,2]
3 02/4 2 Ja [3, 1,2, 4]
4 1|03 1 Ja [1,3,2,4]
5 113 2 Ja [1,2,3,4]
6 2/0[1 2 Nein (1, 2, 3, 4]
7 3. |- - - (1,2, 3,4]

Detaillierte Analyse des Beispiels

e Schritt 1-3: Wahrend der ersten Schleifeniteration wird das groRte Element (4) nach rechts
verschoben. Jeder Vergleich, bei dem ein groReres Element links von einem kleineren liegt,
fuhrt zu einem Tausch. Der Trace Table zeigt genau, wie sich die Liste in jedem Schritt andert.

e Schritt 4-5: In der zweiten Iteration wird der nachste grofSte Wert (3) an seine richtige Position
verschoben.

e Schritt 6: In der dritten Iteration sind keine weiteren Swaps notwendig, da die Liste bereits
sortiert ist.

« Schritt 7: Die vierte Iteration ist nur eine formale Uberpriifung, da keine weiteren Vergleiche
mehr notig sind.

Rekursives Bubble Sort Beispiel

Nun erweitern wir das Beispiel mit einer rekursiven Implementierung des Bubble Sort. Der rekursive
Ansatz arbeitet, indem er die Liste iterativ sortiert, bis keine weiteren Vertauschungen mehr
notwendig sind.

bubble sort recursive(zahlen, n):

n 1:
i range(n - 1):
zahlen|i zahlen|i + 1]:
zahlen|i zahlen[i + 1 zahlen[i + 1 zahlen|i

bubble sort recursive(zahlen, n - 1

zahlen 4, 3, 1, 2
bubble sort recursive(zahlen, len(zahlen

Ein Trace Table fir diese rekursive Version kénnte folgendermaflen aussehen:

Schritt|n|i [zahlen[i]|zahlen[i+1] \z’:;ic’;ﬁl[grl(]z)ahlen['] > Array-Zustand Rekursionsaufruf
1 410/4 3 Ja [3,4,1,2] Nein

2 4|1/4 1 Ja [3,1,4,2] Nein

3 42|14 2 Ja [3,1,2,4] Nein

4 41- |- - - [3, 1,2, 4] Ja (n=3)

5 3/0(3 1 Ja [1,3,2,4] Nein

https://wiki.bzz.ch/ Printed on 2026/02/03 20:33

2026/02/03 20:33 3/4

LUO1d - Trace Table

Schritt n|i |zahlen[i]|zahlen[i+1] ;I:;icjgﬁl[?r:l(]z)ahlen[ll > Array-Zustand|Rekursionsaufruf
6 3113 2 Ja [1, 2, 3,4] Nein

7 3| - - [1, 2,3, 4] Ja (n=2)

8 2(0/1 2 Nein [1, 2, 3, 4] Nein

9 2|- |- - - [1, 2, 3,4] Ja (n=1)

Detaillierte Analyse des Rekursiven Beispiels

e Schritt 1-3: In der ersten Iteration werden die grofSten Werte nach rechts verschoben, analog
zum nicht-rekursiven Beispiel. Nach diesen Schritten bleibt der grote Wert (4) am Ende des

Arrays.

e Schritt 4: Der erste rekursive Aufruf von bubble sort recursive erfolgt mit n = 3. Dabei

werden die nachsten groSten Werte sortiert.

o Schritt 5-6: In dieser rekursiven lteration werden die Werte weiter sortiert, bis 3 und 2 an ihrer

richtigen Position sind.

e Schritt 7: Der nachste rekursive Aufruf erfolgt mitn =

Anwendungsfalle von Trace Tables

Trace Tables sind nUtzlich in verschiedenen Szenarien:

Erweiterte Nutzung von Trace Tables

2. Da nur noch zwei Elemente
uberpruft werden, wird die Liste in dieser Iteration vollstandig sortiert.

e Schritt 8-9: Im letzten rekursiven Aufruf mit n = 1 wird keine weitere Aktion mehr ausgefuhrt,
da die Basisbedingung erreicht ist, und der Sortiervorgang ist abgeschlossen.

e Debugging komplexer Algorithmen: Sie helfen dabei, den genauen Ablauf eines
Algorithmus nachzuvollziehen, insbesondere bei rekursiven oder iterativen Verfahren.

e Verstandnis von Kontrollstrukturen: Beim Lernen von Schleifen, Bedingungen und
rekursiven Aufrufen sind Trace Tables ein ausgezeichnetes Mittel, um den Fluss des Programms

zu visualisieren.

e Testen und Verifizieren von Programmen: Durch das Nachverfolgen der Zustande kdnnen
Programmierer sicherstellen, dass ein Programm korrekt arbeitet und die erwarteten Ergebnisse

liefert.

Neben einfachen Beispielen kdnnen Trace Tables auch bei komplexeren Strukturen verwendet
werden:

e Rekursive Funktionen: Bei rekursiven Funktionen hilft ein Trace Table, die Rlickgabewerte
und die Ruckkehr aus den Rekursionen im Detail zu verfolgen.

e Optimierungsalgorithmen: Bei der Analyse von Algorithmen, die auf Optimierung abzielen,
wie z.B. Dynamic Programming, kann ein Trace Table zur Uberpriifung der Zustandsiibergédnge

und der Entscheidungslogik genutzt werden.

¢ Nebenlaufigkeit und Parallelitat: Trace Tables konnen verwendet werden, um den Zustand
von Threads und die Synchronisation in parallelen Programmen zu Uberwachen.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2025/11/17 13:37 modul:m323:learningunits:lu0l:tracetable https://wiki.bzz.ch/modul/m323/learningunits/lu01/tracetable

Schlussfolgerung

Trace Tables sind ein machtiges Werkzeug, um Programme und Algorithmen systematisch zu
analysieren. Sie bieten eine visuelle Darstellung des Programmablaufs und helfen dabei, die interne
Logik zu entwirren, Fehler zu identifizieren und ein tieferes Verstandnis fir den Code zu entwickeln.
Durch die Anwendung von Trace Tables kdnnen sowohl Anfanger als auch erfahrene Programmierer
ihre Fahigkeiten im Debugging und in der Algorithmusanalyse signifikant verbessern.

M323-LU01, M323-CG1

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu01/tracetable

Last update: 2025/11/17 13:37

https://wiki.bzz.ch/ Printed on 2026/02/03 20:33

https://wiki.bzz.ch/tag/m323-lu01?do=showtag&tag=M323-LU01
https://wiki.bzz.ch/tag/m323-cg1?do=showtag&tag=M323-CG1
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu01/tracetable

	LU01d - Trace Table
	Was ist ein Trace Table?
	Aufbau eines Trace Tables
	Beispiel eines Trace Tables
	Detaillierte Analyse des Beispiels

	Rekursives Bubble Sort Beispiel
	Detaillierte Analyse des Rekursiven Beispiels

	Anwendungsfälle von Trace Tables
	Erweiterte Nutzung von Trace Tables
	Schlussfolgerung

