
2026/02/03 20:33 1/4 LU01d - Trace Table

BZZ - Modulwiki - https://wiki.bzz.ch/

LU01d - Trace Table

Trace Tables sind ein unverzichtbares Werkzeug in der Programmierung, insbesondere beim
Debugging und der Analyse von Algorithmen. Sie ermöglichen es, den Zustand eines Programms
Schritt für Schritt zu verfolgen und dadurch den Ablauf eines Programms oder einer Funktion
nachvollziehbar zu machen. Dies ist besonders hilfreich, um logische Fehler zu identifizieren oder den
Lernprozess bei der Programmierung zu unterstützen.

Was ist ein Trace Table?

Ein Trace Table, auch als Verfolgungstabelle oder Ablaufverfolgung bekannt, ist eine tabellarische
Darstellung, die den Zustand eines Programms nach jedem Ausführungsschritt zeigt. Er listet die
relevanten Variablen und Zustände auf, die sich während der Programmausführung ändern, und
dokumentiert so den exakten Ablauf des Programms.

Aufbau eines Trace Tables

Ein Trace Table besteht in der Regel aus den folgenden Komponenten:

Schritt: Diese Spalte nummeriert die einzelnen Programmschritte, um die Abfolge der
Ausführung darzustellen.
Anweisung: Hier wird die aktuell ausgeführte Anweisung oder der Befehl festgehalten.
Variablen: Für jede relevante Variable gibt es eine eigene Spalte, in der ihr Wert nach jedem
Programmschritt notiert wird.
Bedingungen: Wenn das Programm Kontrollstrukturen wie if-Anweisungen oder Schleifen
enthält, werden hier die Bedingungen und ihre Auswertungen dokumentiert.
Kommentare: Zusätzliche Kommentare oder Erklärungen, die den Ablauf oder besondere
Ereignisse im Code verdeutlichen, können hier vermerkt werden.

Beispiel eines Trace Tables

Betrachten wir ein erweitertes Beispiel, das eine einfache Implementierung des Bubble-Sort-
Algorithmus zeigt:

zahlen = [4, 3, 1, 2]
for i in range(len(zahlen)):
 for j in range(0, len(zahlen)-i-1):
 if zahlen[j] > zahlen[j+1]:
 zahlen[j], zahlen[j+1] = zahlen[j+1], zahlen[j]

Ein entsprechender Trace Table könnte wie folgt aussehen:

Schritt i j zahlen[j] zahlen[j+1] Vergleich (zahlen[j] > zahlen[j+1]) Array-Zustand
1 0 0 4 3 Ja [3, 4, 1, 2]

Last update: 2025/11/17 13:37 modul:m323:learningunits:lu01:tracetable https://wiki.bzz.ch/modul/m323/learningunits/lu01/tracetable

https://wiki.bzz.ch/ Printed on 2026/02/03 20:33

Schritt i j zahlen[j] zahlen[j+1] Vergleich (zahlen[j] > zahlen[j+1]) Array-Zustand
2 0 1 4 1 Ja [3, 1, 4, 2]
3 0 2 4 2 Ja [3, 1, 2, 4]
4 1 0 3 1 Ja [1, 3, 2, 4]
5 1 1 3 2 Ja [1, 2, 3, 4]
6 2 0 1 2 Nein [1, 2, 3, 4]
7 3 - - - - [1, 2, 3, 4]

Detaillierte Analyse des Beispiels

Schritt 1-3: Während der ersten Schleifeniteration wird das größte Element (4) nach rechts
verschoben. Jeder Vergleich, bei dem ein größeres Element links von einem kleineren liegt,
führt zu einem Tausch. Der Trace Table zeigt genau, wie sich die Liste in jedem Schritt ändert.
Schritt 4-5: In der zweiten Iteration wird der nächste größte Wert (3) an seine richtige Position
verschoben.
Schritt 6: In der dritten Iteration sind keine weiteren Swaps notwendig, da die Liste bereits
sortiert ist.
Schritt 7: Die vierte Iteration ist nur eine formale Überprüfung, da keine weiteren Vergleiche
mehr nötig sind.

Rekursives Bubble Sort Beispiel

Nun erweitern wir das Beispiel mit einer rekursiven Implementierung des Bubble Sort. Der rekursive
Ansatz arbeitet, indem er die Liste iterativ sortiert, bis keine weiteren Vertauschungen mehr
notwendig sind.

def bubble_sort_recursive(zahlen, n):
 if n == 1:
 return

 for i in range(n - 1):
 if zahlen[i] > zahlen[i + 1]:
 zahlen[i], zahlen[i + 1] = zahlen[i + 1], zahlen[i]

 bubble_sort_recursive(zahlen, n - 1)

zahlen = [4, 3, 1, 2]
bubble_sort_recursive(zahlen, len(zahlen))

Ein Trace Table für diese rekursive Version könnte folgendermaßen aussehen:

Schritt n i zahlen[i] zahlen[i+1] Vergleich (zahlen[i] >
zahlen[i+1]) Array-Zustand Rekursionsaufruf

1 4 0 4 3 Ja [3, 4, 1, 2] Nein
2 4 1 4 1 Ja [3, 1, 4, 2] Nein
3 4 2 4 2 Ja [3, 1, 2, 4] Nein
4 4 - - - - [3, 1, 2, 4] Ja (n=3)
5 3 0 3 1 Ja [1, 3, 2, 4] Nein

2026/02/03 20:33 3/4 LU01d - Trace Table

BZZ - Modulwiki - https://wiki.bzz.ch/

Schritt n i zahlen[i] zahlen[i+1] Vergleich (zahlen[i] >
zahlen[i+1]) Array-Zustand Rekursionsaufruf

6 3 1 3 2 Ja [1, 2, 3, 4] Nein
7 3 - - - - [1, 2, 3, 4] Ja (n=2)
8 2 0 1 2 Nein [1, 2, 3, 4] Nein
9 2 - - - - [1, 2, 3, 4] Ja (n=1)

Detaillierte Analyse des Rekursiven Beispiels

Schritt 1-3: In der ersten Iteration werden die größten Werte nach rechts verschoben, analog
zum nicht-rekursiven Beispiel. Nach diesen Schritten bleibt der größte Wert (4) am Ende des
Arrays.
Schritt 4: Der erste rekursive Aufruf von bubble_sort_recursive erfolgt mit n = 3. Dabei
werden die nächsten größten Werte sortiert.
Schritt 5-6: In dieser rekursiven Iteration werden die Werte weiter sortiert, bis 3 und 2 an ihrer
richtigen Position sind.
Schritt 7: Der nächste rekursive Aufruf erfolgt mit n = 2. Da nur noch zwei Elemente
überprüft werden, wird die Liste in dieser Iteration vollständig sortiert.
Schritt 8-9: Im letzten rekursiven Aufruf mit n = 1 wird keine weitere Aktion mehr ausgeführt,
da die Basisbedingung erreicht ist, und der Sortiervorgang ist abgeschlossen.

Anwendungsfälle von Trace Tables

Trace Tables sind nützlich in verschiedenen Szenarien:

Debugging komplexer Algorithmen: Sie helfen dabei, den genauen Ablauf eines
Algorithmus nachzuvollziehen, insbesondere bei rekursiven oder iterativen Verfahren.
Verständnis von Kontrollstrukturen: Beim Lernen von Schleifen, Bedingungen und
rekursiven Aufrufen sind Trace Tables ein ausgezeichnetes Mittel, um den Fluss des Programms
zu visualisieren.
Testen und Verifizieren von Programmen: Durch das Nachverfolgen der Zustände können
Programmierer sicherstellen, dass ein Programm korrekt arbeitet und die erwarteten Ergebnisse
liefert.

Erweiterte Nutzung von Trace Tables

Neben einfachen Beispielen können Trace Tables auch bei komplexeren Strukturen verwendet
werden:

Rekursive Funktionen: Bei rekursiven Funktionen hilft ein Trace Table, die Rückgabewerte
und die Rückkehr aus den Rekursionen im Detail zu verfolgen.
Optimierungsalgorithmen: Bei der Analyse von Algorithmen, die auf Optimierung abzielen,
wie z.B. Dynamic Programming, kann ein Trace Table zur Überprüfung der Zustandsübergänge
und der Entscheidungslogik genutzt werden.
Nebenläufigkeit und Parallelität: Trace Tables können verwendet werden, um den Zustand
von Threads und die Synchronisation in parallelen Programmen zu überwachen.

Last update: 2025/11/17 13:37 modul:m323:learningunits:lu01:tracetable https://wiki.bzz.ch/modul/m323/learningunits/lu01/tracetable

https://wiki.bzz.ch/ Printed on 2026/02/03 20:33

Schlussfolgerung

Trace Tables sind ein mächtiges Werkzeug, um Programme und Algorithmen systematisch zu
analysieren. Sie bieten eine visuelle Darstellung des Programmablaufs und helfen dabei, die interne
Logik zu entwirren, Fehler zu identifizieren und ein tieferes Verständnis für den Code zu entwickeln.
Durch die Anwendung von Trace Tables können sowohl Anfänger als auch erfahrene Programmierer
ihre Fähigkeiten im Debugging und in der Algorithmusanalyse signifikant verbessern.

M323-LU01, M323-CG1

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu01/tracetable

Last update: 2025/11/17 13:37

https://wiki.bzz.ch/tag/m323-lu01?do=showtag&tag=M323-LU01
https://wiki.bzz.ch/tag/m323-cg1?do=showtag&tag=M323-CG1
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu01/tracetable

	LU01d - Trace Table
	Was ist ein Trace Table?
	Aufbau eines Trace Tables
	Beispiel eines Trace Tables
	Detaillierte Analyse des Beispiels

	Rekursives Bubble Sort Beispiel
	Detaillierte Analyse des Rekursiven Beispiels

	Anwendungsfälle von Trace Tables
	Erweiterte Nutzung von Trace Tables
	Schlussfolgerung

