
2026/02/06 05:14 1/2 LU02.A10 - Immutable Dataclass

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02.A10 - Immutable Dataclass

Implementieren Sie eine Funktion, die eine neue Instanz
einer Dataclass erstellt, anstatt die Originalinstanz zu
verändern, und nutzen Sie dabei die Prinzipien der
funktionalen Programmierung.

Aufgabenstellung

Definieren Sie eine @dataclass(frozen=True) namens Car mit den Attributen brand1.
(str), mileage (int) und service_dates (List[str]).
Implementieren Sie eine Funktion add_mileage(car: Car, distance: int) → Car, die2.
eine neue Instanz der Dataclass Car erstellt, mit einer aktualisierten mileage und einer neuen
Service-Datum, wenn die Laufleistung über 10.000 km steigt.

Die neue Instanz soll das aktualisierte Datum in der Liste service_dates speichern. Das1.
Datum kann dabei ein fester Wert wie 2024-08-28 sein (für Testzwecke).

Implementieren Sie eine zweite Funktion check_service(car: Car) → bool, die prüft, ob3.
die Laufleistung über 10.000 km liegt und entsprechend True oder False zurückgibt.
Nutzen Sie die Funktionen, um mehrere Änderungen an einer Instanz von Car durchzuführen,4.
und drucken Sie die Liste der Service-Daten am Ende aus.

Code Vorlage

from dataclasses import dataclass, field
from typing import List

@dataclass(frozen=True)
class Car:
 brand: str
 mileage: int
 service_dates: List[str] = field(default_factory=list)

def add_mileage(car: Car, distance: int) -> Car:
 """
 Returns a new Car instance with updated mileage and possibly an updated
service date.
 """
 new_mileage = car.mileage + distance
 new_service_dates = car.service_dates[:]

 if new_mileage > 10000 and (car.mileage <= 10000):
 new_service_dates.append('2024-08-28')

 return Car(brand=car.brand, mileage=new_mileage,
service_dates=new_service_dates)

Last
update:
2024/08/28
09:46

modul:m323:learningunits:lu02:aufgaben:dataclass1 https://wiki.bzz.ch/modul/m323/learningunits/lu02/aufgaben/dataclass1?rev=1724831188

https://wiki.bzz.ch/ Printed on 2026/02/06 05:14

def check_service(car: Car) -> bool:
 """
 Checks if the car's mileage exceeds 10,000 km.
 """
 return car.mileage > 10000

if __name__ == '__main__':
 my_car = Car(brand='Toyota', mileage=9500)
 print(f'Vor der Fahrt: {my_car}')

 my_car = add_mileage(my_car, 600) # Sollte den Service hinzufügen
 print(f'Nach der ersten Fahrt: {my_car}')

 if check_service(my_car):
 print('Service benötigt!')

 my_car = add_mileage(my_car, 100) # Keine Änderung bei Service-Daten
 print(f'Nach der zweiten Fahrt: {my_car}')
 print(f'Service-Daten: {my_car.service_dates}')

Schritt für Schritt

Definieren Sie die immutable Dataclass Car mit den benötigten Attributen.1.
Implementieren Sie die Funktion add_mileage, die eine neue Instanz zurückgibt, wenn die2.
Laufleistung aktualisiert wird und fügt gegebenenfalls ein Service-Datum hinzu.
Implementieren Sie die Funktion check_service, die die Laufleistung überprüft.3.
Führen Sie mehrere Funktionsaufrufe durch, um die Änderungen zu testen und die Liste der4.
Service-Daten zu überprüfen.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu02/aufgaben/dataclass1?rev=1724831188

Last update: 2024/08/28 09:46

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/aufgaben/dataclass1?rev=1724831188

	LU02.A10 - Immutable Dataclass
	Aufgabenstellung
	Code Vorlage
	Schritt für Schritt

