
2026/02/03 18:06 1/3 LU02e - By Value und By Reference bei Dataclasses und Objekten in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02d - By Value und By Reference bei
Dataclasses und Objekten in Python

Einführung

In Python werden Objekte, einschließlich Dataclasses, immer By Reference übergeben. Das
bedeutet, dass bei der Übergabe eines Objekts an eine Funktion eine Referenz auf das Objekt
übergeben wird und keine Kopie davon erstellt wird. Änderungen, die innerhalb der Funktion an den
Attributen des Objekts vorgenommen werden, wirken sich direkt auf das ursprüngliche Objekt aus.

Dataclasses

Dataclasses wurden in Python 3.7 eingeführt und bieten eine bequeme Möglichkeit, Klassen zu
definieren, die hauptsächlich Daten speichern. Sie reduzieren den Boilerplate-Code, der
normalerweise mit der Definition von Klassen einhergeht, und bieten gleichzeitig eine klare und
strukturierte Art der Datenverwaltung.

Hier ein einfaches Beispiel für eine Dataclass:

from dataclasses import dataclass
@dataclass
class Person:
name: str
age: int

Diese Dataclass Person hat zwei Attribute: name und age.

By Reference bei Dataclasses

Da Dataclasses Objekte in Python sind, werden sie By Reference übergeben. Das bedeutet, dass
jede Veränderung der Attribute eines Dataclass-Objekts innerhalb einer Funktion direkt auf das
Originalobjekt wirkt.

Beispiel: By Reference mit Dataclasses

from dataclasses import dataclass
@dataclass
class Person:
name: str
age: int
 
def birthday(person: Person):



Last
update:
2024/08/28
09:02

modul:m323:learningunits:lu02:byreferenceinclasses https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1724828558

https://wiki.bzz.ch/ Printed on 2026/02/03 18:06

"""
Increments the age of the person by 1.
"""
person.age += 1
 
if name == 'main':
p = Person(name='Alice', age=30)
print(f'Vor der Änderung: {p}') # Output: Vor der Änderung:
Person(name='Alice', age=30)
birthday(p)
print(f'Nach der Änderung: {p}') # Output: Nach der Änderung:
Person(name='Alice', age=31)

In diesem Beispiel wird die Instanz der Dataclass Person an die Funktion birthday übergeben. Da
Objekte By Reference übergeben werden, wird das Attribut age der Originalinstanz p direkt in der
Funktion verändert.

Mutable und Immutable Attribute in Dataclasses

Python-Dataclasses können sowohl mutable als auch immutable Attribute enthalten. Unabhängig
davon, ob die Attribute mutable oder immutable sind, wird die Dataclass selbst immer By
Reference übergeben.

Beispiel: Mutable Attribute in Dataclasses

from dataclasses import dataclass, field
from typing import List
@dataclass
class Student:
name: str
grades: List[int] = field(default_factory=list)
 
def add_grade(student: Student, grade: int):
"""
Adds a grade to the student's grade list.
"""
student.grades.append(grade)
 
if name == 'main':
s = Student(name='Bob')
print(f'Vor der Änderung: {s.grades}') # Output: Vor der Änderung: []
add_grade(s, 90)
print(f'Nach der Änderung: {s.grades}') # Output: Nach der Änderung: [90]

In diesem Beispiel wird die Liste grades (ein mutable Attribut) innerhalb der Funktion add_grade
verändert. Da das Objekt Student by reference übergeben wird, wird die Original-Liste grades



2026/02/03 18:06 3/3 LU02e - By Value und By Reference bei Dataclasses und Objekten in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

modifiziert.

Immutable Dataclasses

Wenn Sie möchten, dass eine Dataclass unveränderlich ist, können Sie sie durch Setzen des frozen-
Parameters in @dataclass unveränderlich machen. In einer gefrorenen (frozen) Dataclass sind alle
Attribute unveränderlich, und jede versuchte Änderung führt zu einem Fehler. Dies ähnelt dem
Verhalten von By Value, da die ursprüngliche Instanz nicht verändert werden kann.

Beispiel: Immutable Dataclass

from dataclasses import dataclass
@dataclass(frozen=True)
class ImmutablePerson:
name: str
age: int

In diesem Fall ist die Dataclass ImmutablePerson unveränderlich, was bedeutet, dass jedes Attribut,
sobald es gesetzt ist, nicht mehr geändert werden kann. Jeder Versuch, das Attribut age oder name zu
ändern, führt zu einem Fehler.

Zusammenfassung

In Python werden Objekte, einschließlich Dataclasses, immer By Reference übergeben. Änderungen
an den Attributen eines Objekts innerhalb einer Funktion wirken sich direkt auf das Originalobjekt aus.
Um ungewollte Änderungen zu vermeiden, kann eine Dataclass als frozen deklariert werden, was sie
unveränderlich macht und vor unbeabsichtigten Modifikationen schützt.

Tipp: Wenn Sie mutable Attribute in einer Dataclass
verwenden, sollten Sie sorgfältig überlegen, ob die direkte
Veränderung dieser Attribute innerhalb von Funktionen in
Ihrem Programmdesign erwünscht ist. Verwenden Sie
frozen Dataclasses, um unbeabsichtigte Änderungen zu
verhindern.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1724828558

Last update: 2024/08/28 09:02

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1724828558

	LU02d - By Value und By Reference bei Dataclasses und Objekten in Python
	Einführung
	Dataclasses
	By Reference bei Dataclasses
	Beispiel: By Reference mit Dataclasses

	Mutable und Immutable Attribute in Dataclasses
	Beispiel: Mutable Attribute in Dataclasses

	Immutable Dataclasses
	Beispiel: Immutable Dataclass

	Zusammenfassung


