2026/02/03 18:04 1/4 LUO2e - By Value und By Reference bei Dataclasses und Objekten in Python

LUO2e - By Value und By Reference bei
Dataclasses und Objekten in Python

Einfuhrung

In Python werden Objekte, einschlielllich Dataclasses, immer By Reference Ubergeben. Das
bedeutet, dass bei der Ubergabe eines Objekts an eine Funktion eine Referenz auf das Objekt
libergeben wird und keine Kopie davon erstellt wird. Anderungen, die innerhalb der Funktion an den
Attributen des Objekts vorgenommen werden, wirken sich direkt auf das urspringliche Objekt aus.

Dataclasses

Dataclasses wurden in Python 3.7 eingefuhrt und bieten eine bequeme Mdéglichkeit, Klassen zu
definieren, die hauptsachlich Daten speichern. Sie reduzieren den Boilerplate-Code, der
normalerweise mit der Definition von Klassen einhergeht, und bieten gleichzeitig eine klare und
strukturierte Art der Datenverwaltung.

Hier ein einfaches Beispiel flr eine Dataclass:
dataclasses dataclass
dataclass
Person:
name: str

age: int

Diese Dataclass Person hat zwei Attribute: name und age.

By Reference bei Dataclasses

Da Dataclasses Objekte in Python sind, werden sie By Reference Ubergeben. Das bedeutet, dass
jede Veranderung der Attribute eines Dataclass-Objekts innerhalb einer Funktion direkt auf das
Originalobjekt wirkt.

Beispiel: By Reference mit Dataclasses

dataclasses dataclass

dataclass
Person:
name: str
age: int

BZZ - Modulwiki - https://wiki.bzz.ch/



Last
update:
2024/08/28
09:05

modul:m323:learningunits:lu02:byreferenceinclasses https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1724828701

birthday(person: Person):

Increments the age of the person by 1.

person.age +

name ‘main':
p = Person(name='Alice', age
f'Vor der Anderung: {p}') # Output: Vor der Anderung:
Person(name='Alice', age=30)
birthday(p
f'Nach der Anderung: {p}') # Output: Nach der Anderung:
Person(name='Alice', age=31)

In diesem Beispiel wird die Instanz der Dataclass Person an die Funktion birthday () Ubergeben. Da
Objekte By Reference ubergeben werden, wird das Attribut age der Originalinstanz p direkt in der
Funktion verandert.

Mutable und Immutable Attribute in Dataclasses

Python-Dataclasses konnen sowohl mutable als auch immutable Attribute enthalten. Unabhangig
davon, ob die Attribute mutable oder immutable sind, wird die Dataclass selbst immer By
Reference Ubergeben.

Beispiel: Mutable Attribute in Dataclasses

dataclasses dataclass, field
typing List

dataclass
Student:

name: str

grades: List/[int field(default factory-list

add grade(student: Student, grade: int):

Adds a grade to the student's grade list.

student.grades.append(grade

name 'main':
S Student (name="'Bob'
f'Vor der Anderung: {s.grades}') # Output: Vor der Anderung: []
add grade(s
f'Nach der Anderung: {s.grades}') # Output: Nach der Anderung: [90]

https://wiki.bzz.ch/ Printed on 2026/02/03 18:04



2026/02/03 18:04 3/4 LUO2e - By Value und By Reference bei Dataclasses und Objekten in Python

In diesem Beispiel wird die Liste grades (ein mutable Attribut) innerhalb der Funktion add_grade
verandert. Da das Objekt Student by reference Ubergeben wird, wird die Original-Liste grades
modifiziert.

Immutable Dataclasses

Wenn Sie mochten, dass eine Dataclass unveranderlich ist, kdnnen Sie sie durch Setzen des frozen-
Parameters in @dataclass unveranderlich machen. In einer gefrorenen (frozen) Dataclass sind alle
Attribute unveranderlich, und jede versuchte Anderung filhrt zu einem Fehler. Dies dhnelt dem
Verhalten von By Value, da die urspringliche Instanz nicht verandert werden kann.

Beispiel: Inmutable Dataclass

dataclasses dataclass
dataclass(frozen=True
ImmutablePerson:
name: str
age: int

In diesem Fall ist die Dataclass ImmutablePerson unveranderlich, was bedeutet, dass jedes Attribut,
sobald es gesetzt ist, nicht mehr geandert werden kann. Jeder Versuch, das Attribut age oder name zu
andern, fihrt zu einem Fehler.

Zusammenfassung

In Python werden Objekte, einschlieBlich Dataclasses, immer By Reference (ibergeben. Anderungen
an den Attributen eines Objekts innerhalb einer Funktion wirken sich direkt auf das Originalobjekt aus.
Um ungewollte Anderungen zu vermeiden, kann eine Dataclass als frozen deklariert werden, was sie
unveranderlich macht und vor unbeabsichtigten Modifikationen schutzt.

Tipp: Wenn Sie mutable Attribute in einer Dataclass
verwenden, sollten Sie sorgfaltig Uberlegen, ob die direkte
Veranderung dieser Attribute innerhalb von Funktionen in

& Ihrem Programmdesign erwunscht ist. Verwenden Sie
frozen Dataclasses, um unbeabsichtigte Anderungen zu
verhindern.

BZZ - Modulwiki - https://wiki.bzz.ch/



Last
update:
2024/08/28
09:05

modul:m323:learningunits:lu02:byreferenceinclasses https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1724828701

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?r
ev=1724828701

Last update: 2024/08/28 09:05

https://wiki.bzz.ch/ Printed on 2026/02/03 18:04


https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1724828701
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1724828701

	LU02e - By Value und By Reference bei Dataclasses und Objekten in Python
	Einführung
	Dataclasses
	By Reference bei Dataclasses
	Beispiel: By Reference mit Dataclasses

	Mutable und Immutable Attribute in Dataclasses
	Beispiel: Mutable Attribute in Dataclasses

	Immutable Dataclasses
	Beispiel: Immutable Dataclass

	Zusammenfassung


