2026/02/03 21:18 1/5 LUO2e - By Value und By Reference bei Dataclasses und Objekten in Python

LUO2e - By Value und By Reference bei
Dataclasses und Objekten in Python

Einfuhrung

In Python werden Objekte, einschlielllich Dataclasses, immer By Reference Ubergeben. Das
bedeutet, dass bei der Ubergabe eines Objekts an eine Funktion eine Referenz auf das Objekt
libergeben wird und keine Kopie davon erstellt wird. Anderungen, die innerhalb der Funktion an den
Attributen des Objekts vorgenommen werden, wirken sich direkt auf das urspringliche Objekt aus.

Dataclasses

Dataclasses wurden in Python 3.7 eingefuhrt und bieten eine bequeme Mdéglichkeit, Klassen zu
definieren, die hauptsachlich Daten speichern. Sie reduzieren den Boilerplate-Code, der
normalerweise mit der Definition von Klassen einhergeht, und bieten gleichzeitig eine klare und
strukturierte Art der Datenverwaltung.

Hier ein einfaches Beispiel flr eine Dataclass:
dataclasses dataclass
dataclass
Person:
name: str

age: int

Diese Dataclass Person hat zwei Attribute: name und age.

By Reference bei Dataclasses

Da Dataclasses Objekte in Python sind, werden sie By Reference Ubergeben. Das bedeutet, dass
jede Veranderung der Attribute eines Dataclass-Objekts innerhalb einer Funktion direkt auf das
Originalobjekt wirkt.

Beispiel: By Reference mit Dataclasses

dataclasses dataclass

dataclass
Person:
name: str
age: int

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2025/11/13
10:31

modul:m323:learningunits:lu02:byreferenceinclasses https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1763026301

birthday(person: Person

Increments the age of the person by 1.

person.age +

__hame __main__ ':
p = Person(name='Alice', age
f'Vor der Anderung: {p}') # Output: Vor der Anderung:
Person(name='Alice', age=30)
birthday(p
f'Nach der Anderung: {p}' # Output: Nach der Anderung:
Person(name='Alice', age=31)

In diesem Beispiel wird die Instanz der Dataclass Person an die Funktion birthday () Ubergeben.
Da Objekte By Reference ubergeben werden, wird das Attribut age der Originalinstanz p direkt in
der Funktion verandert.

Mutable und Immutable Attribute in Dataclasses

Python-Dataclasses konnen sowohl mutable als auch immutable Attribute enthalten. Unabhangig
davon, ob die Attribute mutable oder immutable sind, wird die Dataclass selbst immer By
Reference Ubergeben.

Problem: Mutable Default Values

Ein haufiges Problem bei der Verwendung von mutable Objekten (wie Listen) in Dataclasses ist, dass
alle Instanzen der Dataclass denselben Standardwert teilen konnen, wenn dieser direkt als Default-
Wert gesetzt wird. Dies kann zu unerwartetem Verhalten flhren.

dataclasses dataclass

dataclass
Student:
name: str
grades: list

Problem: Alle Instanzen teilen sich dieselbe Liste.
__hame ' _main_ ':
studentl Student (name="'Alice'
student2 Student (name="'Bob'

studentl.grades.append
student2.grades # Output: [90] - Dies ist wahrscheinlich nicht
das gewinschte Verhalten

https://wiki.bzz.ch/ Printed on 2026/02/03 21:18

2026/02/03 21:18 3/5 LUO2e - By Value und By Reference bei Dataclasses und Objekten in Python

In diesem Beispiel teilen sich alle Instanzen der Dataclass Student die gleiche Liste grades, da der
Standardwert direkt gesetzt wurde. Wenn eine Note zu einer Instanz hinzugefugt wird, beeinflusst
dies auch alle anderen Instanzen.

Losung: Verwendung von "field(default_factory=list)

Um dieses Problem zu losen, verwendet man in Dataclasses fur mutable Standardwerte wie Listen die
Funktion “field” mit dem Parameter "default factory . Dadurch wird sichergestellt, dass jede Instanz
ihre eigene Liste erhalt.

dataclasses dataclass, field

dataclass
Student:
name: str
grades: list - field(default factory-list

__hame ' _main_ ':
studentl Student (name="Alice'
student?2 Student (name="'Bob'

studentl.grades.append
student2.grades # Output: [] - Jede Instanz hat ihre eigene,
unabhangige Liste

Durch die Verwendung von "field(default_factory=list)" wird sichergestellt, dass jede Instanz von
Student eine eigene Liste erhalt, und Anderungen an einer Instanz wirken sich nicht auf andere
Instanzen aus.

Immutable Dataclasses

Wenn Sie mochten, dass eine Dataclass unveranderlich ist, kdnnen Sie sie durch Setzen des frozen-
Parameters in @dataclass unveranderlich machen. In einer gefrorenen (frozen) Dataclass sind alle
Attribute unverénderlich, und jede versuchte Anderung fiihrt zu einem Fehler. Dies dhnelt dem
Verhalten von By Value, da die urspriingliche Instanz nicht verandert werden kann.

Beispiel: Inmutable Dataclass

dataclasses dataclass

dataclass(frozen-True
ImmutablePerson:
name: str
age: int

In diesem Fall ist die Dataclass ImmutablePerson unveranderlich, was bedeutet, dass jedes Attribut,

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2025/11/13
10:31

modul:m323:learningunits:lu02:byreferenceinclasses https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1763026301

sobald es gesetzt ist, nicht mehr geandert werden kann. Jeder Versuch, das Attribut age oder name zu
andern, fihrt zu einem Fehler.

Beispiel: Anwendung einer frozen Dataclass

dataclasses dataclass

dataclass(frozen=True
Person:
name: str
age: int

birthday(person: Person) -> Person:

Returns a new Person instance with the age incremented by 1.

Person(name=person.name, age-person.age +

__hame __main_ ‘':
p = Person(name='Alice', age
f'Vor der Anderung: {p}') # Output: Vor der Anderung:
Person(name='Alice', age=30)
new p = birthday(p
f'Nach der Anderung: {p}' # Output: Nach der Anderung:
Person(name='Alice', age=30)
f'Neue Instanz: {new p}' # Output: Neue Instanz:
Person(name='Alice', age=31)

Erlauterung:

Die Dataclass Person ist als frozen markiert, was sie unveranderlich macht. Die Funktion
birthday ist eine pure function. Sie nimmt eine Instanz der Dataclass Person als Eingabe und gibt
eine neue Instanz zurick, wobei das age-Attribut um eins erhéht wird. Das Originalobjekt p bleibt
unverandert. Stattdessen wird eine neue Instanz new p mit dem geanderten Alter erstellt.

Vorteile:

» Keine Seiteneffekte: Da das Originalobjekt nicht verandert wird, gibt es keine ungewollten
Anderungen am Zustand.

* Vorhersehbarkeit: Pure functions sind leichter zu verstehen und zu testen, da das Ergebnis
nur von den Eingabewerten abhangt.

e Immutable Data: Die Verwendung von immutable Datenstrukturen verhindert unbeabsichtigte
Modifikationen und erleichtert die Parallelisierung von Programmen.

Dieses Vorgehen ist besonders nutzlich in Szenarien, in denen Datenintegritat und Vorhersagbarkeit
des Programmverhaltens von hoher Bedeutung sind.

https://wiki.bzz.ch/ Printed on 2026/02/03 21:18

2026/02/03 21:18 5/5 LUO2e - By Value und By Reference bei Dataclasses und Objekten in Python

Zusammenfassung

In Python werden Objekte, einschlieBlich Dataclasses, immer By Reference (ibergeben. Anderungen
an den Attributen eines Objekts innerhalb einer Funktion wirken sich direkt auf das Originalobjekt aus.
Um ungewollte Anderungen zu vermeiden, kann eine Dataclass als frozen deklariert werden, was sie
unveranderlich macht und vor unbeabsichtigten Modifikationen schitzt. Zusatzlich ist es wichtig, bei
der Verwendung von mutable Default-Werten, wie Listen, darauf zu achten, dass jede Instanz ihre
eigene unabhangige Kopie erhalt, indem “field(default_factory=list)" verwendet wird.

Tipp: Wenn Sie mutable Attribute in einer Dataclass
verwenden, sollten Sie sorgfaltig Uberlegen, ob die direkte
Veranderung dieser Attribute innerhalb von Funktionen in
& Ihrem Programmdesign erwunscht ist. Verwenden Sie
frozen Dataclasses oder “field(default_factory=list)", um
unbeabsichtigte Anderungen zu verhindern.

M323-LU02, M323-AE1

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1763026301

Last update: 2025/11/13 10:31

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/tag/m323-lu02?do=showtag&tag=M323-LU02
https://wiki.bzz.ch/tag/m323-ae1?do=showtag&tag=M323-AE1
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1763026301

	LU02e - By Value und By Reference bei Dataclasses und Objekten in Python
	Einführung
	Dataclasses
	By Reference bei Dataclasses
	Beispiel: By Reference mit Dataclasses

	Mutable und Immutable Attribute in Dataclasses
	Problem: Mutable Default Values
	Lösung: Verwendung von `field(default_factory=list)`

	Immutable Dataclasses
	Beispiel: Immutable Dataclass
	Beispiel: Anwendung einer frozen Dataclass
	Erläuterung:
	Vorteile:

	Zusammenfassung

