
2026/02/03 21:16 1/5 LU02e - By Value und By Reference bei Dataclasses und Objekten in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02e - By Value und By Reference bei
Dataclasses und Objekten in Python

Einführung

In Python werden Objekte, einschließlich Dataclasses, immer By Reference übergeben. Das
bedeutet, dass bei der Übergabe eines Objekts an eine Funktion eine Referenz auf das Objekt
übergeben wird und keine Kopie davon erstellt wird. Änderungen, die innerhalb der Funktion an den
Attributen des Objekts vorgenommen werden, wirken sich direkt auf das ursprüngliche Objekt aus.

Dataclasses

Dataclasses wurden in Python 3.7 eingeführt und bieten eine bequeme Möglichkeit, Klassen zu
definieren, die hauptsächlich Daten speichern. Sie reduzieren den Boilerplate-Code, der
normalerweise mit der Definition von Klassen einhergeht, und bieten gleichzeitig eine klare und
strukturierte Art der Datenverwaltung.

Hier ein einfaches Beispiel für eine Dataclass:

from dataclasses import dataclass

@dataclass
class Person:
 name: str
 age: int

Diese Dataclass Person hat zwei Attribute: name und age.

By Reference bei Dataclasses

Da Dataclasses Objekte in Python sind, werden sie By Reference übergeben. Das bedeutet, dass
jede Veränderung der Attribute eines Dataclass-Objekts innerhalb einer Funktion direkt auf das
Originalobjekt wirkt.

Beispiel: By Reference mit Dataclasses

from dataclasses import dataclass

@dataclass
class Person:
 name: str
 age: int

Last
update:
2025/11/17
08:33

modul:m323:learningunits:lu02:byreferenceinclasses https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1763364819

https://wiki.bzz.ch/ Printed on 2026/02/03 21:16

def birthday(person: Person):
 """
 Increments the age of the person by 1.
 """
 person.age += 1

if __name__ == '__main__':
 p = Person(name='Alice', age=30)
 print(f'Vor der Änderung: {p}') # Output: Vor der Änderung:
Person(name='Alice', age=30)
 birthday(p)
 print(f'Nach der Änderung: {p}') # Output: Nach der Änderung:
Person(name='Alice', age=31)

In diesem Beispiel wird die Instanz der Dataclass Person an die Funktion birthday() übergeben.
Da Objekte By Reference übergeben werden, wird das Attribut age der Originalinstanz p direkt in
der Funktion verändert.

Mutable und Immutable Attribute in Dataclasses

Python-Dataclasses können sowohl mutable als auch immutable Attribute enthalten. Unabhängig
davon, ob die Attribute mutable oder immutable sind, wird die Dataclass selbst immer By
Reference übergeben.

Problem: Mutable Default Values

Ein häufiges Problem bei der Verwendung von mutable Objekten (wie Listen) in Dataclasses ist, dass
alle Instanzen der Dataclass denselben Standardwert teilen können, wenn dieser direkt als Default-
Wert gesetzt wird. Dies kann zu unerwartetem Verhalten führen.

from dataclasses import dataclass

@dataclass
class Student:
 name: str
 grades: list = []

Problem: Alle Instanzen teilen sich dieselbe Liste.
if __name__ == '__main__':
 student1 = Student(name='Alice')
 student2 = Student(name='Bob')

 student1.grades.append(90)
 print(student2.grades) # Output: [90] - Dies ist wahrscheinlich nicht
das gewünschte Verhalten

2026/02/03 21:16 3/5 LU02e - By Value und By Reference bei Dataclasses und Objekten in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

In diesem Beispiel teilen sich alle Instanzen der Dataclass Student die gleiche Liste grades, da der
Standardwert direkt gesetzt wurde. Wenn eine Note zu einer Instanz hinzugefügt wird, beeinflusst
dies auch alle anderen Instanzen.

Lösung: Verwendung von `field(default_factory=list)`

Um dieses Problem zu lösen, verwendet man in Dataclasses für mutable Standardwerte wie Listen die
Funktion `field` mit dem Parameter `default_factory`. Dadurch wird sichergestellt, dass jede Instanz
ihre eigene Liste erhält.

from dataclasses import dataclass, field

@dataclass
class Student:
 name: str
 grades: list = field(default_factory=list)

if __name__ == '__main__':
 student1 = Student(name='Alice')
 student2 = Student(name='Bob')

 student1.grades.append(90)
 print(student2.grades) # Output: [] - Jede Instanz hat ihre eigene,
unabhängige Liste

Durch die Verwendung von `field(default_factory=list)` wird sichergestellt, dass jede Instanz von
Student eine eigene Liste erhält, und Änderungen an einer Instanz wirken sich nicht auf andere
Instanzen aus.

Immutable Dataclasses

Wenn Sie möchten, dass eine Dataclass unveränderlich ist, können Sie sie durch Setzen des frozen-
Parameters in @dataclass unveränderlich machen. In einer gefrorenen (frozen) Dataclass sind alle
Attribute unveränderlich, und jede versuchte Änderung führt zu einem Fehler. Dies ähnelt dem
Verhalten von By Value, da die ursprüngliche Instanz nicht verändert werden kann.

Beispiel: Immutable Dataclass

from dataclasses import dataclass

@dataclass(frozen=True)
class ImmutablePerson:
 name: str
 age: int

In diesem Fall ist die Dataclass ImmutablePerson unveränderlich, was bedeutet, dass jedes Attribut,

Last
update:
2025/11/17
08:33

modul:m323:learningunits:lu02:byreferenceinclasses https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1763364819

https://wiki.bzz.ch/ Printed on 2026/02/03 21:16

sobald es gesetzt ist, nicht mehr geändert werden kann. Jeder Versuch, das Attribut age oder name zu
ändern, führt zu einem Fehler.

Beispiel: Anwendung einer frozen Dataclass

from dataclasses import dataclass

@dataclass(frozen=True)
class Person:
 name: str
 age: int

def birthday(person: Person) -> Person:
 """
 Returns a new Person instance with the age incremented by 1.
 """
 return Person(name=person.name, age=person.age + 1)

if __name__ == '__main__':
 p = Person(name='Alice', age=30)
 print(f'Vor der Änderung: {p}') # Output: Vor der Änderung:
Person(name='Alice', age=30)
 new_p = birthday(p)
 print(f'Nach der Änderung: {p}') # Output: Nach der Änderung:
Person(name='Alice', age=30)
 print(f'Neue Instanz: {new_p}') # Output: Neue Instanz:
Person(name='Alice', age=31)

Erläuterung:

Die Dataclass Person ist als frozen markiert, was sie unveränderlich macht. Die Funktion
birthday ist eine pure function. Sie nimmt eine Instanz der Dataclass Person als Eingabe und gibt
eine neue Instanz zurück, wobei das age-Attribut um eins erhöht wird. Das Originalobjekt p bleibt
unverändert. Stattdessen wird eine neue Instanz new_p mit dem geänderten Alter erstellt.

Vorteile:

Keine Seiteneffekte: Da das Originalobjekt nicht verändert wird, gibt es keine ungewollten
Änderungen am Zustand.
Vorhersehbarkeit: Pure functions sind leichter zu verstehen und zu testen, da das Ergebnis
nur von den Eingabewerten abhängt.
Immutable Data: Die Verwendung von immutable Datenstrukturen verhindert unbeabsichtigte
Modifikationen und erleichtert die Parallelisierung von Programmen.

Dieses Vorgehen ist besonders nützlich in Szenarien, in denen Datenintegrität und Vorhersagbarkeit
des Programmverhaltens von hoher Bedeutung sind.

2026/02/03 21:16 5/5 LU02e - By Value und By Reference bei Dataclasses und Objekten in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

Zusammenfassung

In Python werden Objekte, einschließlich Dataclasses, immer By Reference übergeben. Änderungen
an den Attributen eines Objekts innerhalb einer Funktion wirken sich direkt auf das Originalobjekt aus.
Um ungewollte Änderungen zu vermeiden, kann eine Dataclass als frozen deklariert werden, was sie
unveränderlich macht und vor unbeabsichtigten Modifikationen schützt. Zusätzlich ist es wichtig, bei
der Verwendung von mutable Default-Werten, wie Listen, darauf zu achten, dass jede Instanz ihre
eigene unabhängige Kopie erhält, indem `field(default_factory=list)` verwendet wird.

Tipp: Wenn Sie mutable Attribute in einer Dataclass
verwenden, sollten Sie sorgfältig überlegen, ob die direkte
Veränderung dieser Attribute innerhalb von Funktionen in
Ihrem Programmdesign erwünscht ist. Verwenden Sie
frozen Dataclasses oder `field(default_factory=list)`, um
unbeabsichtigte Änderungen zu verhindern.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1763364819

Last update: 2025/11/17 08:33

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byreferenceinclasses?rev=1763364819

	LU02e - By Value und By Reference bei Dataclasses und Objekten in Python
	Einführung
	Dataclasses
	By Reference bei Dataclasses
	Beispiel: By Reference mit Dataclasses

	Mutable und Immutable Attribute in Dataclasses
	Problem: Mutable Default Values
	Lösung: Verwendung von `field(default_factory=list)`

	Immutable Dataclasses
	Beispiel: Immutable Dataclass
	Beispiel: Anwendung einer frozen Dataclass
	Erläuterung:
	Vorteile:

	Zusammenfassung

