
2026/02/03 12:09 1/3 LU02d - By Value und By Reference in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02d - By Value und By Reference in Python

Einführung

In Python ist es wichtig zu verstehen, wie Daten zwischen Funktionen und Variablen übergeben
werden. Python verwendet sowohl By Value als auch By Reference Mechanismen, abhängig vom
Datentyp. Das Verständnis dieser Konzepte hilft, den Programmfluss und das Verhalten von Variablen
in verschiedenen Kontexten besser zu verstehen.

By Value

By Value bedeutet, dass der Wert einer Variable kopiert wird, wenn er an eine Funktion übergeben
wird. Änderungen am kopierten Wert haben keine Auswirkungen auf die ursprüngliche Variable. In
Python gilt dieses Konzept hauptsächlich für unveränderliche (immutable) Datentypen.

Beispiele für Immutable Datentypen

Zu den unveränderlichen Datentypen in Python gehören:

int (z.B. 5)
float (z.B. 3.14)
str (z.B. 'Hallo')
tuple (z.B. (1, 2, 3))

Wenn eine Variable mit einem dieser Typen an eine Funktion übergeben wird, wird eine Kopie des
Wertes erstellt. Jede Änderung innerhalb der Funktion betrifft nur die Kopie, nicht die ursprüngliche
Variable.

Beispiel 1: By Value mit Immutable Typen

def modify_value(x):
 """
 Tries to modify the immutable value by adding 10.
 """
 x += 10
 return x

if name == 'main':
 a = 5
 new_value = modify_value(a)
 print(f'Originaler Wert: {a}') # Output: Originaler Wert: 5
 print(f'Neuer Wert: {new_value}') # Output: Neuer Wert: 15

Last update:
2025/11/17
13:37

modul:m323:learningunits:lu02:byvaluebyreference https://wiki.bzz.ch/modul/m323/learningunits/lu02/byvaluebyreference

https://wiki.bzz.ch/ Printed on 2026/02/03 12:09

Hier bleibt die ursprüngliche Variable a unverändert, da int ein unveränderlicher Typ ist. Die
Änderung findet nur in der Kopie innerhalb der Funktion statt, und der ursprüngliche Wert bleibt
erhalten.

By Reference

By Reference bedeutet, dass eine Referenz auf die Originaldaten übergeben wird, anstatt eine
Kopie zu erstellen. Änderungen an diesen Daten innerhalb der Funktion beeinflussen somit die
ursprüngliche Variable. In Python gilt dieses Konzept hauptsächlich für veränderbare (mutable)
Datentypen.

Beispiele für Mutable Datentypen

Zu den veränderbaren Datentypen in Python gehören:

list (z.B. [1, 2, 3])
dict (z.B. {'a': 1, 'b': 2})
set (z.B. {1, 2, 3})

Wenn eine Variable mit einem dieser Typen an eine Funktion übergeben wird, wird eine Referenz auf
das Originalobjekt übergeben. Jede Änderung innerhalb der Funktion wirkt sich direkt auf das
ursprüngliche Objekt aus.

Beispiel 2: By Reference mit Mutable Typen

def modify_list(some_list):
 """
 Appends the value 4 to the passed list.
 """
 some_list.append(4)

if name == 'main':
 my_list = [1, 2, 3]
 modify_list(my_list)
 print(f'Geänderte Liste: {my_list}') # Output: Geänderte Liste: [1, 2,
3, 4]

In diesem Beispiel wird die Liste my_list direkt innerhalb der Funktion geändert. Da Listen in Python
mutable sind, wird die Original-Liste durch die Änderung in der Funktion beeinflusst.

Unterschiede und Auswirkungen

Die Art und Weise, wie Werte und Referenzen in Python übergeben werden, hat direkte Auswirkungen

2026/02/03 12:09 3/3 LU02d - By Value und By Reference in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

auf das Verhalten und die Vorhersagbarkeit des Codes:

Immutable Objekte: Änderungen in einer Funktion betreffen nur die lokale Kopie. Der
Originalwert bleibt unverändert.
Mutable Objekte: Änderungen in einer Funktion betreffen direkt das Originalobjekt. Dies kann
zu unbeabsichtigten Seiteneffekten führen, wenn die Funktion den Zustand des Objekts
verändert.

Um ungewollte Seiteneffekte zu vermeiden, sollten Sie sich der Datenarten bewusst sein, die Sie in
Funktionen verwenden, und überlegen, ob das Objekt unverändert bleiben soll oder nicht.

Zusammenfassung

Das Verständnis von By Value und By Reference ist entscheidend für das Schreiben von klarem
und wartbarem Code in Python. Immutable Objekte bieten Schutz vor unbeabsichtigten Änderungen,
während mutable Objekte Flexibilität bieten, aber sorgfältig gehandhabt werden müssen, um
unvorhergesehene Probleme zu vermeiden.

Tipp: Wenn Sie mutable Objekte verwenden, aber
unerwartete Änderungen vermeiden möchten, sollten Sie in
Erwägung ziehen, eine Kopie des Objekts zu erstellen, bevor
Sie es an eine Funktion übergeben.

M323-LU02, M323-AE1

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byvaluebyreference

Last update: 2025/11/17 13:37

https://wiki.bzz.ch/tag/m323-lu02?do=showtag&tag=M323-LU02
https://wiki.bzz.ch/tag/m323-ae1?do=showtag&tag=M323-AE1
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/byvaluebyreference

	LU02d - By Value und By Reference in Python
	Einführung
	By Value
	Beispiele für Immutable Datentypen
	Beispiel 1: By Value mit Immutable Typen

	By Reference
	Beispiele für Mutable Datentypen
	Beispiel 2: By Reference mit Mutable Typen

	Unterschiede und Auswirkungen
	Zusammenfassung

