
2026/02/03 16:08 1/2 LU02c - Immutable Values

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02c - Immutable Values

Immutable values, oder unveränderliche Werte, sind Daten, die nach ihrer Erstellung nicht mehr
verändert werden können. Sie stehen im Gegensatz zu den veränderbaren, oder „mutable“ Werten,
die modifiziert werden können.

Der Unterschied zwischen mutable und immutable values

Mutable Values: Diese Werte können verändert werden. Ein einfaches Beispiel wäre eine Liste
in Python, die verändert werden kann, indem Elemente hinzugefügt oder entfernt werden.

Beispiel für mutable values (Liste)
my_list = [1, 2, 3]
my_list.append(4) # my_list ist jetzt [1, 2, 3, 4]

Immutable Values: Diese Werte können nicht verändert werden. Ein Beispiel wäre ein Tupel in
Python, das nach seiner Erstellung nicht mehr verändert werden kann.

Beispiel für immutable values (Tupel)
my_tuple = (1, 2, 3)
my_tuple.append(4) würde einen Fehler erzeugen, da ein Tupel nicht
verändert werden kann

Bedeutung von Unveränderlichkeit in der funktionalen
Programmierung

Unveränderlichkeit fördert Reine Funktionen

Durch die Verwendung von unveränderlichen Werten wird sichergestellt, dass eine Funktion keine
Seiteneffekte hat. Da die Daten nicht verändert werden können, kann eine Funktion, die
unveränderliche Werte verwendet, als „rein“ betrachtet werden.

Einfachere Parallelverarbeitung

Unveränderliche Werte erleichtern die Parallelverarbeitung, da keine Sperren oder
Synchronisationsmechanismen benötigt werden, um den Zugriff auf Daten zwischen Threads zu
steuern.

Vorhersagbarer Code

Da unveränderliche Werte nicht geändert werden können, wird der Code vorhersagbarer. Man muss
nicht befürchten, dass ein anderer Teil des Codes die Daten unerwartet ändert.

Last
update:
2025/11/13
10:30

modul:m323:learningunits:lu02:immutablevalues https://wiki.bzz.ch/modul/m323/learningunits/lu02/immutablevalues?rev=1763026213

https://wiki.bzz.ch/ Printed on 2026/02/03 16:08

Herausforderungen bei der Verwendung von Immutable
Values

Die Unveränderlichkeit ist nicht immer einfach umzusetzen und kann in einigen Fällen zu
Leistungseinbußen führen. Da unveränderliche Werte nicht verändert werden können, muss bei
Bedarf ein neuer Wert erstellt werden, was zusätzlichen Speicherplatz erfordert.

Beispiel: Änderung eines unveränderlichen Wertes erzeugt einen neuen Wert
original_tuple = (1, 2, 3)
new_tuple = original_tuple + (4,) # original_tuple bleibt unverändert,
new_tuple ist (1, 2, 3, 4)

Fazit

Die Unveränderlichkeit ist ein Schlüsselkonzept in der
funktionalen Programmierung, das zur Entwicklung klarer
und wartbarer Codes beiträgt. Durch die Festlegung, dass
Werte nach ihrer Erstellung nicht verändert werden dürfen,
werden potenzielle Fehlerquellen und Komplexitäten im Code
vermieden. Insbesondere in Mehrthreading-Umgebungen
bietet die Unveränderlichkeit Vorteile, da keine Sperren
benötigt werden, um den Zugriff auf Daten zu kontrollieren.
Allerdings erfordert die Implementierung der
Unveränderlichkeit auch ein Umdenken und kann in
bestimmten Fällen Herausforderungen bei der Leistung und
dem Speicherbedarf mit sich bringen. Dennoch ist die
Nutzung der Unveränderlichkeit, insbesondere in Verbindung
mit reinen Funktionen, ein mächtiges Werkzeug in der
funktionalen Programmierung, das dazu beiträgt, robuste
und leicht verständliche Programme zu erstellen.

M323-LU02, M323-AF1

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu02/immutablevalues?rev=1763026213

Last update: 2025/11/13 10:30

https://wiki.bzz.ch/tag/m323-lu02?do=showtag&tag=M323-LU02
https://wiki.bzz.ch/tag/m323-af1?do=showtag&tag=M323-AF1
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/immutablevalues?rev=1763026213

	LU02c - Immutable Values
	Der Unterschied zwischen mutable und immutable values
	Bedeutung von Unveränderlichkeit in der funktionalen Programmierung
	Unveränderlichkeit fördert Reine Funktionen
	Einfachere Parallelverarbeitung
	Vorhersagbarer Code

	Herausforderungen bei der Verwendung von Immutable Values

