2026/02/03 16:08 1/2 LUO2c - Immutable Values

LUO2c - Immutable Values

Immutable values, oder unveranderliche Werte, sind Daten, die nach ihrer Erstellung nicht mehr

verandert werden konnen. Sie stehen im Gegensatz zu den veranderbaren, oder ,mutable” Werten,
die modifiziert werden kénnen.

Der Unterschied zwischen mutable und immutable values

e Mutable Values: Diese Werte konnen verandert werden. Ein einfaches Beispiel ware eine Liste
in Python, die verandert werden kann, indem Elemente hinzugefugt oder entfernt werden.

Beispiel fiur mutable values (Liste)
my list
my list.append # my list ist jetzt [1, 2, 3, 4]

e Immutable Values: Diese Werte kdnnen nicht verandert werden. Ein Beispiel ware ein Tupel in
Python, das nach seiner Erstellung nicht mehr verandert werden kann.

Beispiel fiur immutable values (Tupel)

my tuple

my tuple.append(4) wirde einen Fehler erzeugen, da ein Tupel nicht
verandert werden kann

Bedeutung von Unveranderlichkeit in der funktionalen
Programmierung

Unveranderlichkeit fordert Reine Funktionen

Durch die Verwendung von unveranderlichen Werten wird sichergestellt, dass eine Funktion keine
Seiteneffekte hat. Da die Daten nicht verandert werden kdnnen, kann eine Funktion, die
unveranderliche Werte verwendet, als ,rein” betrachtet werden.

Einfachere Parallelverarbeitung

Unveranderliche Werte erleichtern die Parallelverarbeitung, da keine Sperren oder
Synchronisationsmechanismen bendtigt werden, um den Zugriff auf Daten zwischen Threads zu
steuern.

Vorhersagbarer Code

Da unveranderliche Werte nicht gedndert werden kdnnen, wird der Code vorhersagbarer. Man muss
nicht beflrchten, dass ein anderer Teil des Codes die Daten unerwartet andert.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2025/11/13
10:30

Herausforderungen bei der Verwendung von Immutable
Values

modul:m323:learningunits:lu02:immutablevalues https://wiki.bzz.ch/modul/m323/learningunits/lu02/immutablevalues?rev=1763026213

Die Unveranderlichkeit ist nicht immer einfach umzusetzen und kann in einigen Fallen zu
LeistungseinbuBen fuhren. Da unveranderliche Werte nicht verandert werden kénnen, muss bei
Bedarf ein neuer Wert erstellt werden, was zusatzlichen Speicherplatz erfordert.

Beispiel: Anderung eines unverédnderlichen Wertes erzeugt einen neuen Wert
original tuple

new tuple = original tuple + # original tuple bleibt unveréndert,

new tuple ist (1, 2, 3, 4)

Fazit

Die Unveranderlichkeit ist ein Schlisselkonzept in der
funktionalen Programmierung, das zur Entwicklung klarer
und wartbarer Codes beitragt. Durch die Festlegung, dass
Werte nach ihrer Erstellung nicht verandert werden durfen,
werden potenzielle Fehlerquellen und Komplexitaten im Code
vermieden. Insbesondere in Mehrthreading-Umgebungen
bietet die Unveranderlichkeit Vorteile, da keine Sperren

&3 bendtigt werden, um den Zugriff auf Daten zu kontrollieren.
Allerdings erfordert die Implementierung der
Unveranderlichkeit auch ein Umdenken und kann in
bestimmten Fallen Herausforderungen bei der Leistung und
dem Speicherbedarf mit sich bringen. Dennoch ist die
Nutzung der Unveranderlichkeit, insbesondere in Verbindung
mit reinen Funktionen, ein machtiges Werkzeug in der
funktionalen Programmierung, das dazu beitragt, robuste
und leicht verstandliche Programme zu erstellen.

M323-LU02, M323-AF1

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: v
https://wiki.bzz.ch/modul/m323/learningunits/lu02/immutablevalues?rev=1763026213 - g

Last update: 2025/11/13 10:30

https://wiki.bzz.ch/ Printed on 2026/02/03 16:08

https://wiki.bzz.ch/tag/m323-lu02?do=showtag&tag=M323-LU02
https://wiki.bzz.ch/tag/m323-af1?do=showtag&tag=M323-AF1
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/immutablevalues?rev=1763026213

	LU02c - Immutable Values
	Der Unterschied zwischen mutable und immutable values
	Bedeutung von Unveränderlichkeit in der funktionalen Programmierung
	Unveränderlichkeit fördert Reine Funktionen
	Einfachere Parallelverarbeitung
	Vorhersagbarer Code

	Herausforderungen bei der Verwendung von Immutable Values

