
2026/02/03 17:56 1/3 LU02.L05 - Listen

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02.L05 - Listen

Schritt 1: Verwenden von List Comprehension oder ''map''-Funktion

Wir können diese Aufgabe mit einer Schleife, einer List Comprehension oder der map-Funktion lösen.
Hier sind Beispiele für beide Ansätze:

Mit Schleife:

def increment_numbers(numbers):
 new_numbers = [] # create an empty list to store the new numbers
 for number in numbers:
 new_numbers.append(number + 1) # append the incremented value to the
new list
 return new_numbers

Diese Techniken werden wir im Verlauf des Kurses
genauer kennenlernen.

Mit List Comprehension:

def increment_numbers(numbers):
 return [number + 1 for number in numbers]

Mit map-Funktion:

def increment_numbers(numbers):
 return list(map(lambda x: x + 1,
numbers))

Schritt 2: Rückgabe der neuen Liste

Die Funktion gibt die neue Liste zurück, wie in den vorherigen Schritten gezeigt.

Schritt 3: Testen der Funktion

if __name__ == '__main__':
 new_numbers = increment_numbers(numbers)
 print('Original numbers:', numbers)
 print('Incremented numbers:', new_numbers)

Last
update:
2024/08/28
15:15

modul:m323:learningunits:lu02:loesungen:immutable2 https://wiki.bzz.ch/modul/m323/learningunits/lu02/loesungen/immutable2

https://wiki.bzz.ch/ Printed on 2026/02/03 17:56

Schritt 4: Testen der Funktion

Lassen Sie die Pytests laufen.

Ausgabe

Original numbers: [1, 2, 3, 4, 5]
Incremented numbers: [2, 3, 4, 5, 6]

Zusammenfassung

Die Musterlösung zeigt zwei verschiedene Möglichkeiten, wie eine Funktion eine neue Liste erstellen
kann, in der alle Elemente der Eingabeliste um eins erhöht wurden, ohne die ursprüngliche Liste zu
verändern. Dies ist ein wichtiger Aspekt der funktionalen Programmierung und hilft dabei, den Code
besser verständlich und vorhersagbar zu machen.

Warum ist die Lösung pure und immutable?
Die Lösung zur Aufgabe achtet auf die Prinzipien einer pure function und immutable
values aus folgenden Gründen:

Pure Function:
Die Funktion increment_numbers ist eine reine Funktion, da sie keine
Seiteneffekte hat. Sie verändert keine globalen Variablen, druckt nichts auf
die Konsole aus und interagiert nicht mit externen Systemen.
Die Funktion hängt ausschließlich von ihren Eingabewerten ab und liefert
immer das gleiche Ergebnis für die gleichen Eingaben. Dies macht sie
vorhersehbar und testbar.

Immutable Values:
Die ursprüngliche Liste, die an die Funktion übergeben wird, bleibt unverändert.
Dies stellt sicher, dass die Daten, mit denen die Funktion arbeitet, unveränderlich
(immutable) bleiben.
Die Funktion erstellt eine neue Liste, in der die Werte um +1 erhöht werden, ohne
die ursprüngliche Liste zu verändern. Dies ist ein zentraler Aspekt der
Unveränderlichkeit und stellt sicher, dass die ursprünglichen Daten intakt bleiben.

Verwendung von append und Unveränderlichkeit:
Obwohl in der Funktion die Methode append verwendet wird, stellt dies kein
Problem dar, da append auf eine neue, innerhalb der Funktion erstellte Liste
angewendet wird.
Diese neue Liste new_numbers ist nicht die ursprüngliche Liste, die als Argument
übergeben wurde, sondern eine separate, leere Liste, die in der Funktion erzeugt
wird.

2026/02/03 17:56 3/3 LU02.L05 - Listen

BZZ - Modulwiki - https://wiki.bzz.ch/

Somit wird die ursprüngliche Liste numbers nicht verändert, und das Prinzip der
Unveränderlichkeit bleibt gewahrt. Die Verwendung von append führt lediglich
dazu, dass die neuen Werte zur neuen Liste hinzugefügt werden, ohne die
Eingabeliste zu beeinflussen.

Zusammengefasst:

Die Funktion increment_numbers erfüllt die Anforderungen einer pure function,
da sie keine Seiteneffekte aufweist und sich ausschließlich auf ihre Eingabewerte
stützt.
Die Werte in der ursprünglichen Liste bleiben unverändert, was den Grundsatz der
Unveränderlichkeit unterstützt und eine klare, verständliche und vorhersagbare
Funktionsweise ermöglicht.
Die Verwendung von append ist in diesem Kontext unproblematisch, da sie nur auf
eine neu erstellte Liste angewendet wird und die ursprüngliche Liste unverändert
bleibt.

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu02/loesungen/immutable2

Last update: 2024/08/28 15:15

https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/loesungen/immutable2

	LU02.L05 - Listen
	Schritt 1: Verwenden von List Comprehension oder ''map''-Funktion
	Schritt 2: Rückgabe der neuen Liste
	Schritt 3: Testen der Funktion
	Schritt 4: Testen der Funktion
	Ausgabe
	Zusammenfassung
	Warum ist die Lösung pure und immutable?

