2026/02/03 17:56 1/3 LU02.LO05 - Listen

LUO2.LO5 - Listen

Schritt 1: Verwenden von List Comprehension oder "map''-Funktion

Wir kénnen diese Aufgabe mit einer Schleife, einer List Comprehension oder der map-Funktion I6sen.
Hier sind Beispiele fur beide Ansatze:

Mit Schleife:

increment numbers (numbers

new numbers # create an empty list to store the new numbers
number numbers:
new numbers.append(number + # append the incremented value to the
new list

new numbers

Diese Techniken werden wir im Verlauf des Kurses
genauer kennenlernen.

Mit List Comprehension:

— increment numbers (numbers):
@ number + number numbers

Mit map-Funktion:
increment numbers (numbers
list(map X: X +
numbers

Schritt 2: Ruckgabe der neuen Liste

Die Funktion gibt die neue Liste zurlck, wie in den vorherigen Schritten gezeigt.

Schritt 3: Testen der Funktion

~_name_ __main_ ':

new numbers = increment numbers(numbers
‘Original numbers:', numbers
‘Incremented numbers:', new numbers

BZZ - Modulwiki - https://wiki.bzz.ch/



Last

;832‘/:8:8/28 modul:m323:learningunits:lu02:loesungen:immutable2 https://wiki.bzz.ch/modul/m323/learningunits/lu02/loesungen/immutable2

15:15

Schritt 4: Testen der Funktion

Lassen Sie die Pytests laufen.
Ausgabe

Original numbers: [1, 2, 3, 4, 5]
Incremented numbers: [2, 3, 4, 5, 6]

Zusammenfassung

Die Musterlosung zeigt zwei verschiedene Mdaglichkeiten, wie eine Funktion eine neue Liste erstellen
kann, in der alle Elemente der Eingabeliste um eins erhoht wurden, ohne die urspringliche Liste zu
verandern. Dies ist ein wichtiger Aspekt der funktionalen Programmierung und hilft dabei, den Code
besser verstandlich und vorhersagbar zu machen.

Warum ist die Losung pure und immutable?

Die Losung zur Aufgabe achtet auf die Prinzipien einer pure function und immutable
values aus folgenden Grinden:

e Pure Function:

o Die Funktion increment numbers ist eine reine Funktion, da sie keine
Seiteneffekte hat. Sie verandert keine globalen Variablen, druckt nichts auf
die Konsole aus und interagiert nicht mit externen Systemen.

o Die Funktion hangt ausschliellich von ihren Eingabewerten ab und liefert
immer das gleiche Ergebnis fur die gleichen Eingaben. Dies macht sie
vorhersehbar und testbar.

9 e Immutable Values:
e Die ursprungliche Liste, die an die Funktion Ubergeben wird, bleibt unverandert.
Dies stellt sicher, dass die Daten, mit denen die Funktion arbeitet, unveranderlich
(immutable) bleiben.
e Die Funktion erstellt eine neue Liste, in der die Werte um +1 erhoht werden, ohne
die urspringliche Liste zu verandern. Dies ist ein zentraler Aspekt der
Unveranderlichkeit und stellt sicher, dass die ursprunglichen Daten intakt bleiben.

e Verwendung von append und Unveranderlichkeit:

e Obwohl in der Funktion die Methode append verwendet wird, stellt dies kein
Problem dar, da append auf eine neue, innerhalb der Funktion erstellte Liste
angewendet wird.

e Diese neue Liste new numbers ist nicht die urspringliche Liste, die als Argument
Ubergeben wurde, sondern eine separate, leere Liste, die in der Funktion erzeugt
wird.

https://wiki.bzz.ch/ Printed on 2026/02/03 17:56



2026/02/03 17:56 3/3 LU02.L05 - Listen

e Somit wird die urspriingliche Liste numbers nicht verandert, und das Prinzip der
Unveranderlichkeit bleibt gewahrt. Die Verwendung von append fuhrt lediglich
dazu, dass die neuen Werte zur neuen Liste hinzugeflgt werden, ohne die
Eingabeliste zu beeinflussen.

Zusammengefasst:

P e Die Funktion increment numbers erfullt die Anforderungen einer pure function,
@ da sie keine Seiteneffekte aufweist und sich ausschlieflich auf ihre Eingabewerte
stutzt.

e Die Werte in der ursprunglichen Liste bleiben unverandert, was den Grundsatz der
Unveranderlichkeit unterstitzt und eine klare, verstandliche und vorhersagbare
Funktionsweise ermdglicht.

» Die Verwendung von append ist in diesem Kontext unproblematisch, da sie nur auf
eine neu erstellte Liste angewendet wird und die urspringliche Liste unverandert
bleibt.

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: e
https://wiki.bzz.ch/modul/m323/learningunits/lu02/loesungen/immutable2 .3k

Last update: 2024/08/28 15:15

BZZ - Modulwiki - https://wiki.bzz.ch/


https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/loesungen/immutable2

	LU02.L05 - Listen
	Schritt 1: Verwenden von List Comprehension oder ''map''-Funktion
	Schritt 2: Rückgabe der neuen Liste
	Schritt 3: Testen der Funktion
	Schritt 4: Testen der Funktion
	Ausgabe
	Zusammenfassung
	Warum ist die Lösung pure und immutable?


