2026/02/08 22:17 1/3 LU02.LO05 - Listen

LUO2.LO5 - Listen

Schritt 1: Verwenden von List Comprehension oder "map''-Funktion

Wir kénnen diese Aufgabe mit einer Schleife, einer List Comprehension oder der map-Funktion I6sen.
Hier sind Beispiele fur beide Ansatze:

Mit Schleife:

increment numbers (numbers

new numbers # create an empty list to store the new numbers
number numbers:
new numbers.append(number + # append the incremented value to the
new list

new numbers

Diese Techniken werden wir im Verlauf des Kurses
genauer kennenlernen.

Mit List Comprehension:

— increment numbers (numbers):
@ number + number numbers

Mit map-Funktion:
increment numbers (numbers
list(map X: X +
numbers

Schritt 2: Ruckgabe der neuen Liste

Die Funktion gibt die neue Liste zurlck, wie in den vorherigen Schritten gezeigt.

Schritt 3: Testen der Funktion

~_name_ __main_ ':

new numbers = increment numbers(numbers
‘Original numbers:', numbers
‘Incremented numbers:', new numbers

BZZ - Modulwiki - https://wiki.bzz.ch/



Last
update:
2024/08/28
15:15

Schritt 4: Testen der Funktion

modul:m323:learningunits:lu02:loesungen:immutable2 https://wiki.bzz.ch/modul/m323/learningunits/lu02/loesungen/immutable2?rev=1724850945

Lassen Sie die Pytests laufen.
Ausgabe

Original numbers: [1, 2, 3, 4, 5]
Incremented numbers: [2, 3, 4, 5, 6]

Zusammenfassung

Die Musterlosung zeigt zwei verschiedene Maglichkeiten, wie eine Funktion eine neue Liste erstellen
kann, in der alle Elemente der Eingabeliste um eins erhdht wurden, ohne die urspringliche Liste zu
verandern. Dies ist ein wichtiger Aspekt der funktionalen Programmierung und hilft dabei, den Code
besser verstandlich und vorhersagbar zu machen.

Warum ist die Losung pure und
immutable?

Die Losung zur Aufgabe LU02.A05 - Listen achtet auf die
Prinzipien einer pure function und immutable values aus
folgenden Grunden:

e Pure Function:

o Die Funktion increment numbers ist eine reine
Funktion, da sie keine Seiteneffekte hat. Sie
verandert keine globalen Variablen, druckt nichts
auf die Konsole aus und interagiert nicht mit

6 externen Systemen.
o Die Funktion hangt ausschliellich von ihren

Eingabewerten ab und liefert immer das gleiche
Ergebnis fur die gleichen Eingaben. Dies macht
sie vorhersehbar und testbar.

¢ Immutable Values:

e Die ursprungliche Liste, die an die Funktion Ubergeben
wird, bleibt unverandert. Dies stellt sicher, dass die
Daten, mit denen die Funktion arbeitet, unveranderlich
(immutable) bleiben.

e Die Funktion erstellt eine neue Liste, in der die Werte
um +1 erhoht werden, ohne die ursprungliche Liste zu
verandern. Dies ist ein zentraler Aspekt der
Unveranderlichkeit und stellt sicher, dass die
urspringlichen Daten intakt bleiben.

https://wiki.bzz.ch/ Printed on 2026/02/08 22:17



2026/02/08 22:17 3/3 LU02.LO05 - Listen

e Verwendung von append und Unveranderlichkeit:

e Obwohl in der Funktion die Methode append
verwendet wird, stellt dies kein Problem dar, da
append auf eine neue, innerhalb der Funktion erstellte
Liste angewendet wird.

* Diese neue Liste new _numbers ist nicht die
urspringliche Liste, die als Argument Ubergeben
wurde, sondern eine separate, leere Liste, die in der
Funktion erzeugt wird.

e Somit wird die ursprungliche Liste numbers nicht
verandert, und das Prinzip der Unveranderlichkeit
bleibt gewahrt. Die Verwendung von append fuhrt
lediglich dazu, dass die neuen Werte zur neuen Liste
hinzugeflgt werden, ohne die Eingabeliste zu
beeinflussen.

@ Zusammengefasst:

e Die Funktion increment numbers erfullt die
Anforderungen einer pure function, da sie keine
Seiteneffekte aufweist und sich ausschliefSlich auf ihre
Eingabewerte stutzt.

e Die Werte in der ursprunglichen Liste bleiben
unverandert, was den Grundsatz der
Unveranderlichkeit unterstitzt und eine klare,
verstandliche und vorhersagbare Funktionsweise
ermoglicht.

* Die Verwendung von append ist in diesem Kontext
unproblematisch, da sie nur auf eine neu erstellte Liste
angewendet wird und die urspringliche Liste
unverandert bleibt.

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: H
https://wiki.bzz.ch/modul/m323/learningunits/lu02/loesungen/immutable2?rev=1724850945 °

Last update: 2024/08/28 15:15

BZZ - Modulwiki - https://wiki.bzz.ch/


https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/loesungen/immutable2?rev=1724850945

	LU02.L05 - Listen
	Schritt 1: Verwenden von List Comprehension oder ''map''-Funktion
	Schritt 2: Rückgabe der neuen Liste
	Schritt 3: Testen der Funktion
	Schritt 4: Testen der Funktion
	Ausgabe
	Zusammenfassung
	Warum ist die Lösung pure und immutable?


