
2026/02/08 16:11 1/3 LU02.L05 - Listen

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02.L05 - Listen

Schritt 1: Verwenden von List Comprehension oder ''map''-Funktion

Wir können diese Aufgabe mit einer Schleife, einer List Comprehension oder der map-Funktion lösen.
Hier sind Beispiele für beide Ansätze:

Mit Schleife:

def increment_numbers(numbers):
 new_numbers = [] # create an empty list to store the new numbers
 for number in numbers:
 new_numbers.append(number + 1) # append the incremented value to the
new list
 return new_numbers

Diese Techniken werden wir im Verlauf des Kurses
genauer kennenlernen.

Mit List Comprehension:

def increment_numbers(numbers):
 return [number + 1 for number in numbers]

Mit map-Funktion:

def increment_numbers(numbers):
 return list(map(lambda x: x + 1,
numbers))

Schritt 2: Rückgabe der neuen Liste

Die Funktion gibt die neue Liste zurück, wie in den vorherigen Schritten gezeigt.

Schritt 3: Testen der Funktion

if __name__ == '__main__':
 new_numbers = increment_numbers(numbers)
 print('Original numbers:', numbers)
 print('Incremented numbers:', new_numbers)

Last
update:
2024/08/28
15:15

modul:m323:learningunits:lu02:loesungen:immutable2 https://wiki.bzz.ch/modul/m323/learningunits/lu02/loesungen/immutable2?rev=1724850945

https://wiki.bzz.ch/ Printed on 2026/02/08 16:11

Schritt 4: Testen der Funktion

Lassen Sie die Pytests laufen.

Ausgabe

Original numbers: [1, 2, 3, 4, 5]
Incremented numbers: [2, 3, 4, 5, 6]

Zusammenfassung

Die Musterlösung zeigt zwei verschiedene Möglichkeiten, wie eine Funktion eine neue Liste erstellen
kann, in der alle Elemente der Eingabeliste um eins erhöht wurden, ohne die ursprüngliche Liste zu
verändern. Dies ist ein wichtiger Aspekt der funktionalen Programmierung und hilft dabei, den Code
besser verständlich und vorhersagbar zu machen.

Warum ist die Lösung pure und
immutable?
Die Lösung zur Aufgabe LU02.A05 - Listen achtet auf die
Prinzipien einer pure function und immutable values aus
folgenden Gründen:

Pure Function:
Die Funktion increment_numbers ist eine reine
Funktion, da sie keine Seiteneffekte hat. Sie
verändert keine globalen Variablen, druckt nichts
auf die Konsole aus und interagiert nicht mit
externen Systemen.
Die Funktion hängt ausschließlich von ihren
Eingabewerten ab und liefert immer das gleiche
Ergebnis für die gleichen Eingaben. Dies macht
sie vorhersehbar und testbar.

Immutable Values:
Die ursprüngliche Liste, die an die Funktion übergeben
wird, bleibt unverändert. Dies stellt sicher, dass die
Daten, mit denen die Funktion arbeitet, unveränderlich
(immutable) bleiben.
Die Funktion erstellt eine neue Liste, in der die Werte
um +1 erhöht werden, ohne die ursprüngliche Liste zu
verändern. Dies ist ein zentraler Aspekt der
Unveränderlichkeit und stellt sicher, dass die
ursprünglichen Daten intakt bleiben.

2026/02/08 16:11 3/3 LU02.L05 - Listen

BZZ - Modulwiki - https://wiki.bzz.ch/

Verwendung von append und Unveränderlichkeit:
Obwohl in der Funktion die Methode append
verwendet wird, stellt dies kein Problem dar, da
append auf eine neue, innerhalb der Funktion erstellte
Liste angewendet wird.
Diese neue Liste new_numbers ist nicht die
ursprüngliche Liste, die als Argument übergeben
wurde, sondern eine separate, leere Liste, die in der
Funktion erzeugt wird.
Somit wird die ursprüngliche Liste numbers nicht
verändert, und das Prinzip der Unveränderlichkeit
bleibt gewahrt. Die Verwendung von append führt
lediglich dazu, dass die neuen Werte zur neuen Liste
hinzugefügt werden, ohne die Eingabeliste zu
beeinflussen.

Zusammengefasst:

Die Funktion increment_numbers erfüllt die
Anforderungen einer pure function, da sie keine
Seiteneffekte aufweist und sich ausschließlich auf ihre
Eingabewerte stützt.
Die Werte in der ursprünglichen Liste bleiben
unverändert, was den Grundsatz der
Unveränderlichkeit unterstützt und eine klare,
verständliche und vorhersagbare Funktionsweise
ermöglicht.
Die Verwendung von append ist in diesem Kontext
unproblematisch, da sie nur auf eine neu erstellte Liste
angewendet wird und die ursprüngliche Liste
unverändert bleibt.

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu02/loesungen/immutable2?rev=1724850945

Last update: 2024/08/28 15:15

https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/loesungen/immutable2?rev=1724850945

	LU02.L05 - Listen
	Schritt 1: Verwenden von List Comprehension oder ''map''-Funktion
	Schritt 2: Rückgabe der neuen Liste
	Schritt 3: Testen der Funktion
	Schritt 4: Testen der Funktion
	Ausgabe
	Zusammenfassung
	Warum ist die Lösung pure und immutable?

