
2026/02/03 18:31 1/4 LU02b - Pure Functions

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02b - Pure Functions

Definition und Bedeutung von Pure Functions

Pure Functions, auch reine Funktionen genannt, sind ein Grundkonzept der funktionalen
Programmierung. Sie haben zwei Hauptmerkmale:

Deterministisch: Das Ergebnis einer pure function hängt ausschließlich von den übergebenen1.
Eingabewerten ab und hat keine Seiteneffekte. Das bedeutet, dass sie bei gleichen
Eingabewerten immer das gleiche Ergebnis liefern.
Keine Seiteneffekte: Eine pure function verändert nichts in ihrem Umfeld. Sie wirkt sich nicht2.
auf den globalen Zustand aus und verändert keine Eingabeparameter.

Ein einfaches Beispiel in Python könnte eine Funktion zur Addition zweier Zahlen sein:

def add(x, y):
 return x + y

Warum Pure Functions? Vorteile und Anwendungsbereiche

Pure Functions bieten mehrere Vorteile:

Testbarkeit: Da das Ergebnis nur von den Eingaben abhängt, sind pure functions leicht zu1.
testen.
Wartbarkeit: Sie sind leichter zu verstehen und zu warten, da sie keine externen Zustände2.
verändern.
Parallelisierung: Da sie keine Seiteneffekte haben, können sie sicher parallel ausgeführt3.
werden.

Pure Functions sind in vielen Programmierparadigmen nützlich, nicht nur in der funktionalen
Programmierung. Sie können zur Verbesserung der Codequalität in jedem Kontext beitragen.

Vergleich mit Unpure Functions

Unpure Functions, im Gegensatz zu pure functions, können Seiteneffekte haben oder von externen
Zuständen abhängig sein. Sie können somit unerwartete Ergebnisse liefern, was sie schwerer zu
verstehen und zu warten macht.

Beispiel 1

Betrachten Sie das folgende Beispiel mit einer Variablen:

total = 0

Last
update:
2025/11/13
09:56

modul:m323:learningunits:lu02:purefunctions https://wiki.bzz.ch/modul/m323/learningunits/lu02/purefunctions?rev=1763024179

https://wiki.bzz.ch/ Printed on 2026/02/03 18:31

def add_to_total(x):
 global total
 total += x

if __name__ == '__main__':
 add_to_total(3)
 print(total) #3

Diese Funktion verändert den globalen Zustand (die Variable total) und ist somit eine unpure
function. Das global-Schlüsselwort signalisiert dem Entwickler und dem Python-Interpreter, dass die
Funktion eine globale Variable ändert. Dies macht es einfacher, „unpure“ Funktionen zu erkennen und
fördert die Verwendung von „pure“ Funktionen, indem es die Aufmerksamkeit auf die Änderung des
globalen Zustands lenkt.

Beispiel 2

In diesem Beispiel haben wir eine Liste namens my_list, die außerhalb der Funktion modify_list
definiert ist. Die Funktion modify_list ändert diese Liste.

Definieren einer externen Liste
my_list = [1, 2, 3]

def modify_list():
 """
 Modify the external_list by appending a value to it.
 """
 return my_list.append(4)

if __name__ == '__main__':
 print('Vor der Änderung: ', my_list) # Output: Vor der Änderung: [1, 2,
3]
 new_list = modify_list()
 print('Neue Liste: ', new_list) # Output: Neue Liste: [1, 2, 3, 4]
 print('Nach der Änderung: ', my_list) # Output: Nach der Änderung: [1,
2, 3, 4]

Wie Sie sehen können, ändert die Funktion modify_list den Zustand der my_list. Daher ist
modify_list eine unpure Funktion. In diesem Fall wird das global-Schlüsselwort nicht benötigt, da
Listen in Python „mutable“ (veränderbar) sind. Das heißt, sie können innerhalb einer Funktion
verändert werden, ohne dass das global-Schlüsselwort benötigt wird. Das kann zu einer weniger
klaren Code-Struktur führen, da es schwieriger ist, solche Änderungen auf den ersten Blick zu
erkennen.

2026/02/03 18:31 3/4 LU02b - Pure Functions

BZZ - Modulwiki - https://wiki.bzz.ch/

Beispiel 3

In diesem Beispiel wird eine Liste als Argument an eine Funktion übergeben. Die Funktion modifiziert
die Liste direkt, was zeigt, dass Listen in Python by reference übergeben werden.

def append_to_list(some_list, append):
 """
 Appends the value ''append'' to the passed list.
 """
 some_list.append(append)

if name == 'main':
 my_list = [1, 2, 3]
 print('Vor der Änderung:', my_list) # Output: Vor der Änderung: [1, 2,
3]
 append_to_list(my_list,5)
 print('Nach der Änderung:', my_list) # Output: Nach der Änderung: [1, 2,
3, 5]

In diesem Fall sehen wir, dass die Funktion append_to_list die Liste my_list ändert, indem sie
ein weiteres Element hinzufügt. Obwohl my_list als Argument übergeben wird, wird es innerhalb der
Funktion verändert, ohne dass es zurückgegeben werden muss. Das zeigt, dass die Liste by reference
übergeben wird und Änderungen an der Liste in der Funktion Auswirkungen auf die ursprüngliche
Liste außerhalb der Funktion haben.

Dieses Verhalten macht append_to_list ebenfalls zu einer unpure function, da sie den Zustand der
übergebenen Liste direkt verändert.

Wichtiger Hinweis: Dieses Beispiel verdeutlicht die
Implikationen der Übergabe von mutable Objekten wie Listen
in Python. Es ist wichtig zu verstehen, dass solche
Änderungen schwer nachvollziehbar sein können,
insbesondere in komplexeren Programmen, und das
Verständnis des Unterschieds zwischen pure und unpure
functions erleichtert es, vorhersehbaren und wartbaren Code
zu schreiben.

Fazit

Pure Functions sind ein mächtiges Konzept, das nicht nur die
Qualität des Codes verbessert, sondern auch zur Entwicklung
von effizienteren, wartbareren und sichereren Programmen
beiträgt. Die Unterscheidung zwischen pure und unpure
functions hilft, die Prinzipien der funktionalen
Programmierung besser zu verstehen und in der Praxis
umzusetzen.

Last
update:
2025/11/13
09:56

modul:m323:learningunits:lu02:purefunctions https://wiki.bzz.ch/modul/m323/learningunits/lu02/purefunctions?rev=1763024179

https://wiki.bzz.ch/ Printed on 2026/02/03 18:31

M323-LU02
M323-AG1

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu02/purefunctions?rev=1763024179

Last update: 2025/11/13 09:56

https://wiki.bzz.ch/tag/m323-lu02?do=showtag&tag=M323-LU02
https://wiki.bzz.ch/tag/m323-ag1?do=showtag&tag=M323-AG1
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/purefunctions?rev=1763024179

	LU02b - Pure Functions
	Definition und Bedeutung von Pure Functions
	Warum Pure Functions? Vorteile und Anwendungsbereiche
	Vergleich mit Unpure Functions
	Beispiel 1
	Beispiel 2
	Beispiel 3

