2026/02/03 16:23 1/4 LUO2b - Pure Functions

LUO2b - Pure Functions

Definition und Bedeutung von Pure Functions

Pure Functions, auch reine Funktionen genannt, sind ein Grundkonzept der funktionalen
Programmierung. Sie haben zwei Hauptmerkmale:

1. Deterministisch: Das Ergebnis einer pure function hangt ausschlieBBlich von den Ubergebenen
Eingabewerten ab und hat keine Seiteneffekte. Das bedeutet, dass sie bei gleichen
Eingabewerten immer das gleiche Ergebnis liefern.

2. Keine Seiteneffekte: Eine pure function verandert nichts in ihrem Umfeld. Sie wirkt sich nicht
auf den globalen Zustand aus und verandert keine Eingabeparameter.

Ein einfaches Beispiel in Python kdnnte eine Funktion zur Addition zweier Zahlen sein:

add(x, y):
X +y

Warum Pure Functions? Vorteile und Anwendungsbereiche

Pure Functions bieten mehrere Vorteile:

1. Testbarkeit: Da das Ergebnis nur von den Eingaben abhangt, sind pure functions leicht zu
testen.

2. Wartbarkeit: Sie sind leichter zu verstehen und zu warten, da sie keine externen Zustande
verandern.

3. Parallelisierung: Da sie keine Seiteneffekte haben, kénnen sie sicher parallel ausgefuhrt
werden.

Pure Functions sind in vielen Programmierparadigmen natzlich, nicht nur in der funktionalen
Programmierung. Sie kénnen zur Verbesserung der Codequalitat in jedem Kontext beitragen.

Vergleich mit Unpure Functions

Unpure Functions, im Gegensatz zu pure functions, kdnnen Seiteneffekte haben oder von externen
Zustanden abhangig sein. Sie kdnnen somit unerwartete Ergebnisse liefern, was sie schwerer zu
verstehen und zu warten macht.

Beispiel 1

Betrachten Sie das folgende Beispiel mit einer Variablen:

total

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

gggg}:i/la modul:m323:learningunits:lu02:purefunctions https://wiki.bzz.ch/modul/m323/learningunits/lu02/purefunctions?rev=1763024229

09:57

add to total(x):
total
total += x

__name __main__ ':
add to total

total) #3

Diese Funktion verandert den globalen Zustand (die Variable total) und ist somit eine unpure
function. Das global-Schllsselwort signalisiert dem Entwickler und dem Python-Interpreter, dass die
Funktion eine globale Variable andert. Dies macht es einfacher, ,,unpure” Funktionen zu erkennen und
fordert die Verwendung von ,pure” Funktionen, indem es die Aufmerksamkeit auf die Anderung des
globalen Zustands lenkt.

Beispiel 2

In diesem Beispiel haben wir eine Liste namens my 1ist, die auBerhalb der Funktion modify list
definiert ist. Die Funktion modify list andert diese Liste.

Definieren einer externen Liste
my list

modify list

Modify the external list by appending a value to it.

my list.append

__hame __main__ ‘':
'‘Vor der Anderung: ', my list) # Output: Vor der Anderung: [1, 2,
3]
new list = modify list
‘Neue Liste: ', new list) # Output: Neue Liste: [1, 2, 3, 4]
'‘Nach der Anderung: ', my list) # Output: Nach der Anderung: [1,
2, 3, 4]

Wie Sie sehen kénnen, andert die Funktion modify list den Zustand der my list. Daher ist
modify list eine unpure Funktion. In diesem Fall wird das global-Schlisselwort nicht benétigt, da
Listen in Python ,mutable” (veranderbar) sind. Das heil3t, sie kdnnen innerhalb einer Funktion
verandert werden, ohne dass das global-Schlisselwort bendtigt wird. Das kann zu einer weniger
klaren Code-Struktur fiihren, da es schwieriger ist, solche Anderungen auf den ersten Blick zu
erkennen.

https://wiki.bzz.ch/ Printed on 2026/02/03 16:23

2026/02/03 16:23 3/4 LUO2b - Pure Functions

Beispiel 3

In diesem Beispiel wird eine Liste als Argument an eine Funktion Ubergeben. Die Funktion modifiziert
die Liste direkt, was zeigt, dass Listen in Python by reference GUbergeben werden.

append to list(some list, append

Appends the value '‘'append'' to the passed list.

some list.append(append

name ‘main':
my list
'‘Vor der Anderung:', my list) # Output: Vor der Anderung: [1, 2,
3]
append to list(my list
‘Nach der Anderung:', my list) # Output: Nach der Anderung: [1, 2,
3, 5]

In diesem Fall sehen wir, dass die Funktion append to list die Liste my list andert, indem sie
ein weiteres Element hinzufigt. Obwohl my 1list als Argument Ubergeben wird, wird es innerhalb der
Funktion verandert, ohne dass es zuriickgegeben werden muss. Das zeigt, dass die Liste by reference
(ibergeben wird und Anderungen an der Liste in der Funktion Auswirkungen auf die urspriingliche
Liste auBerhalb der Funktion haben.

Dieses Verhalten macht append_to_list ebenfalls zu einer unpure function, da sie den Zustand der
Ubergebenen Liste direkt verandert.

Wichtiger Hinweis: Dieses Beispiel verdeutlicht die
Implikationen der Ubergabe von mutable Objekten wie Listen
in Python. Es ist wichtig zu verstehen, dass solche
Anderungen schwer nachvollziehbar sein kénnen,

&3 insbesondere in komplexeren Programmen, und das
Verstandnis des Unterschieds zwischen pure und unpure
functions erleichtert es, vorhersehbaren und wartbaren Code
zu schreiben.

Fazit

Pure Functions sind ein machtiges Konzept, das nicht nur die
Qualitat des Codes verbessert, sondern auch zur Entwicklung

8 von effizienteren, wartbareren und sichereren Programmen
beitragt. Die Unterscheidung zwischen pure und unpure
functions hilft, die Prinzipien der funktionalen
Programmierung besser zu verstehen und in der Praxis
umzusetzen.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

ggggﬁ:l/lB modul:m323:learningunits:lu02:purefunctions https://wiki.bzz.ch/modul/m323/learningunits/lu02/purefunctions?rev=1763024229

09:57

M323-LU02, M323-AG1

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu02/purefunctions?rev=1763024229

Last update: 2025/11/13 09:57

https://wiki.bzz.ch/ Printed on 2026/02/03 16:23

https://wiki.bzz.ch/tag/m323-lu02?do=showtag&tag=M323-LU02
https://wiki.bzz.ch/tag/m323-ag1?do=showtag&tag=M323-AG1
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu02/purefunctions?rev=1763024229

	LU02b - Pure Functions
	Definition und Bedeutung von Pure Functions
	Warum Pure Functions? Vorteile und Anwendungsbereiche
	Vergleich mit Unpure Functions
	Beispiel 1
	Beispiel 2
	Beispiel 3

