
2026/02/03 07:19 1/4 LU03.A03 - Task Scheduler

BZZ - Modulwiki - https://wiki.bzz.ch/

LU03.A03 - Task Scheduler

Simpel: Alle Tasks haben identische Verzögerungen

Erstelle einen Task-Scheduler, der eine Liste von Funktionen
mit einer festen Verzögerung zwischen jedem Task ausführt.

Vorgehen

Definiere zwei oder mehr einfache Funktionen, die nur eine Ausgabe wie print('Task 1
executed!') ausführen.
Schreibe eine Funktion namens task_scheduler, die eine Liste von Funktionen und eine feste
Zeitverzögerung als Argumente akzeptiert. Dieser Taskscheduler führt die Tasks in der Liste
dann mit der Zeitverzögerung aus.
Benutze die time.sleep-Methode, um die Verzögerung zwischen den einzelnen Tasks zu
implementieren.

def task1():
 """
 Eine einfache Funktion, die eine Meldung ausgibt, um zu signalisieren,
dass Task 1 ausgeführt wurde.
 """
 pass

def task2():
 """
 Eine einfache Funktion, die eine Meldung ausgibt, um zu signalisieren,
dass Task 2 ausgeführt wurde.
 """
 pass

def task_scheduler(tasks, delay):
 """
 Führt eine Liste von Tasks mit einer festen Zeitverzögerung zwischen
jedem Task aus.

 Args:
 tasks (list): Eine Liste von Funktionen, die ausgeführt werden sollen.
 delay (int): Die Zeitverzögerung in Sekunden zwischen den einzelnen
Tasks.

 Returns:
 None

Last
update:
2024/03/28
14:07

modul:m323:learningunits:lu03:aufgaben:taskscheduler https://wiki.bzz.ch/modul/m323/learningunits/lu03/aufgaben/taskscheduler

https://wiki.bzz.ch/ Printed on 2026/02/03 07:19

 """
 pass

def task_scheduler_expert(tasks, delays):
 """
 Führt eine Liste von Tasks mit unterschiedlichen Zeitverzögerungen
zwischen jedem Task aus.

 Args:
 tasks (list): Eine Liste von Funktionen, die ausgeführt werden sollen.
 delays (list): Eine Liste von Zeitverzögerungen in Sekunden für die
jeweiligen Tasks.

 Returns:
 None
 """
 pass

if __name__ == '__main__':
 tasks = [task1, task2]
 delay = 2
 delays = [2,3]
 task_scheduler(tasks, delay)
 task_scheduler_expert(tasks, delays)

Expert: Jeder Task hat eine unterschiedliche Verzögerung

Erweitere den Task-Scheduler, damit er für jeden Task eine
individuelle Verzögerung hat.

Aufgabenstellung

Modifiziere die task_scheduler-Funktion, so dass sie zwei Listen als Argumente akzeptiert:
eine mit den Tasks und eine mit den Verzögerungen. Nennen die Funktion
task_scheduler_expert
Stelle sicher, dass die Verzögerungen individuell für jeden Task angewendet werden.

define your tasks here

def task_scheduler(tasks, delay):
 # This function should be done by now
 pass

def task_scheduler_expert(tasks, delays):

2026/02/03 07:19 3/4 LU03.A03 - Task Scheduler

BZZ - Modulwiki - https://wiki.bzz.ch/

 # your code goes here
 pass

if __name__ == '__main__':
 tasks = [task1, task2]
 delay = 2
 delays = [2,3]
 task_scheduler(tasks, delay)
 task_scheduler_expert(tasks, delays)

Exkurs zur ZIP-Funktion

Die zip-Funktion kombiniert die Elemente mehrerer Iterables (wie Listen oder
Tupel) und gibt einen Iterator von Tupeln zurück, wobei das erste Element in
jedem Argument das erste Element im ersten Tupel usw. ist. Im obigen Beispiel
würde die Verwendung von zip mit den Listen tasks und delays zu einem
Iterator führen, der die folgenden Tupel enthält:

(<function task1 at 0x10044d1b0>, 1)
(<function task2 at 0x10044d900>, 3)

Wenn du diesen Iterator in eine Liste umwandeln möchtest, kannst du die list-
Funktion verwenden. Zum Beispiel:

tasks = [task1, task2]
delays = [1, 3]

zipped_list = list(zip(tasks, delays))
zipped_list wäre nun: [(<function task1 at 0x10044d1b0>,
1), (<function task2 at 0x10044d900>, 3)]

Natürlich kann zip auch für andere Datentypen verwendet werden:

Definieren von zwei Listen
names = ['Alice', 'Bob', 'Charlie']
ages = [25, 30, 22]

Verknüfen von zwei Listen in eine neue Liste von Tuples
zipped_list = list(zip(names, ages)) # zipped_list wäre nun:
[('Alice', 25), ('Bob', 30), ('Charlie', 22)]

Verwenden der zip-Funktion, um die Listen zu kombinieren
und direkt mit dem Iterator zu interieren
for name, age in zip(names, ages):
 print(f'{name} is {age} years old')

Führt zur Ausgabe:

Alice is 25 years old

Last
update:
2024/03/28
14:07

modul:m323:learningunits:lu03:aufgaben:taskscheduler https://wiki.bzz.ch/modul/m323/learningunits/lu03/aufgaben/taskscheduler

https://wiki.bzz.ch/ Printed on 2026/02/03 07:19

Bob is 30 years old
Charlie is 22 years old

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu03/aufgaben/taskscheduler

Last update: 2024/03/28 14:07

https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu03/aufgaben/taskscheduler

	LU03.A03 - Task Scheduler
	Simpel: Alle Tasks haben identische Verzögerungen
	Vorgehen

	Expert: Jeder Task hat eine unterschiedliche Verzögerung
	Aufgabenstellung

