2026/02/02 22:56 1/3 LU03.A10 - Timer und API-Call

LUO03.A10 - Timer und API-Call

In dieser Ubung werden Sie die Kraft der Asynchronitat in Python erleben. lhre Aufgabe ist es, einen
asynchronen Timer zu erstellen, der alle 3 Sekunden einen API-Aufruf ausfuhrt. Gleichzeitig sollte ein
separater asynchroner Prozess eine andere Aufgabe durchflihren, ohne durch den API-Aufruf
unterbrochen zu werden.

Detaillierte Aufgabenstellung

API-Aufruf: Ihr Programm sollte alle 3 Sekunden einen asynchronen Aufruf an die folgende URL
machen: https://postman-echo.com/delay/3 . Nachdem eine Antwort vom Server erhalten wurde,
sollte diese in der Konsole ausgegeben werden.

Zweite Aufgabe: Parallel zum API-Aufruf sollte Ihr Programm eine andere asynchrone Aufgabe
durchfuhren. Diese Aufgabe sollte darin bestehen, jede Sekunde eine Zahl auszugeben, die standig
um 1 erhoht wird (ein asynchroner Timer).

Hinweis: Verwenden Sie asyncio in Kombination mit einer Bibliothek wie httpx fir asynchrone HTTP-
Anfragen.

Erwartetes Verhalten

Wenn Sie lhr Programm ausflihren, sollten Sie sehen, dass der Timer jede Sekunde hochzahlt. Alle 3
Sekunden wird Ihr Programm eine Pause einlegen, um auf die Antwort des API-Aufrufs zu warten.
Nachdem die Antwort erhalten wurde, wird sie in der Konsole angezeigt, und der Timer fahrt ohne
Unterbrechung fort.

Beispiel

Ein moglicher Output kénnte wie folgt aussehen:
0]

1

2

3

API Response: <Response [200 OK]>
4

Vorlage

asyncio
httpx

BZZ - Modulwiki - https://wiki.bzz.ch/

https://postman-echo.com/delay/3

;a;;gpdate: 2025/11/25 modul:m323:learningunits:lu03:aufgaben:timer https://wiki.bzz.ch/modul/m323/learningunits/lu03/aufgaben/timer

det api_response callback(response data):

Callback-Funktion, die aufgerufen wird, nachdem die API-Antwort
empfangen wurde.

Args:
- response data: Die Daten, die von der API empfangen wurden.

Returns:
- None, da die Daten direkt in der Konsole ausgegeben werden.

#TODO: Hier die Daten verarbeiten

async def fetch data from api(callback):

Diese Funktion ruft asynchron alle 3 Sekunden eine API
("https://postman-echo.com/delay/3') auf, die eine

Verzogerung von 3 Sekunden simuliert. Nachdem die Daten von der API
abgerufen wurden, wird der bereitgestellte

Callback mit den Daten aufgerufen.

Args:
- callback: Die Callback-Funktion, die aufgerufen wird, nachdem die API-
Daten empfangen wurden.

Returns:
- None, da die Daten an die Callback-Funktion weitergegeben werden.

TODO: Hier in einer Endlosschleife die API aufrufen und die Daten an
die Callback-Funktion lbergeben

async def async _timer

Diese Funktion fungiert als asynchroner Timer, der jede Sekunde
hochzahlt und den aktuellen Wert ausgibt.

Sie verwendet “asyncio.sleep” fiir die Verzdgerung und fiihrt eine endlose
Schleife aus, die den Zahler jede Sekunde erhdht.

Returns:
- None, da der Zahlerstand direkt in der Konsole ausgegeben wird.

#TODO: Hier den Timer implementieren

async def main

Hauptfunktion, die beide asynchrone Funktionen, "~fetch data from api’

https://wiki.bzz.ch/ Printed on 2026/02/02 22:56

2026/02/02 22:56 3/3 LU03.A10 - Timer und API-Call

und “async timer , parallel ausfihrt.

Sie verwendet “asyncio.create task’ um die beiden Funktionen als
separate, gleichzeitig laufende Tasks zu starten.

Returns:
- None, da alle Ausgaben direkt in den jeweiligen Funktionen erfolgen.

api_task
asyncio.create task(fetch data from api(api response callback
timer task = asyncio.create task(async timer

await api_ task
awalit timer task

__name ' main_ ':
asyncio.run(main

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu03/aufgaben/timer

Last update: 2025/11/25 21:26

BZZ - Modulwiki - https://wiki.bzz.ch/

https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu03/aufgaben/timer

	LU03.A10 - Timer und API-Call
	Detaillierte Aufgabenstellung
	Erwartetes Verhalten
	Beispiel
	Vorlage

