
2026/02/09 13:24 1/4 LU03.A01 - Rekursive Suche in einem Verzeichnisbaum

BZZ - Modulwiki - https://wiki.bzz.ch/

LU03.A01 - Rekursive Suche in einem
Verzeichnisbaum

Stellen Sie sich einen Verzeichnisbaum auf einem Computer
vor, in dem jedes Verzeichnis Unterverzeichnisse oder
Dateien enthalten kann. Schreiben Sie eine rekursive
Funktion, die eine Datei in diesem Verzeichnisbaum sucht.

Sie können den Verzeichnisbaum als verschachtelte Dictionary-Struktur darstellen:

directory_tree = {
 'name': 'root',
 'path': '/'
 'type': 'directory',
 'children': [
 {
 'name': 'subdir1',
 'path': '/subdir1'
 'type': 'directory',
 'children': [
 {
 'name': 'file2.txt',
 'path': '/subdir1/file2.txt''
 'type': 'file'
 }
 {...}
]
 },
 {
 'name': 'file.txt',
 'path': '/file.txt''
 'type': 'file'
 }
]
}

Die Funktion sollte den Pfad zur gesuchten Datei zurückgeben oder None, wenn die Datei nicht
gefunden wird.

Vorlage

directory_tree = {
 'type': 'directory',
 'name': 'root',

Last
update:
2024/03/28
14:07

modul:m323:learningunits:lu03:aufgaben:verzeichnisbaum https://wiki.bzz.ch/modul/m323/learningunits/lu03/aufgaben/verzeichnisbaum

https://wiki.bzz.ch/ Printed on 2026/02/09 13:24

 'path': '/',
 'children': [
 {
 'type': 'directory',
 'name': 'home',
 'path': '/home',
 'children': [
 {
 'type': 'directory',
 'name': 'user',
 'path': '/home/user',
 'children': [
 {'type': 'file', 'name': 'file1.txt', 'path':
'/home/user/file1.txt'},
 {'type': 'file', 'name': 'file2.txt', 'path':
'/home/user/file2.txt'},
],
 },
 {'type': 'file', 'name': 'readme.md', 'path':
'/home/readme.md'},
],
 },
 {
 'type': 'directory',
 'name': 'etc',
 'path': '/etc',
 'children': [
 {'type': 'file', 'name': 'config.yaml', 'path':
'/etc/config.yaml'},
 {
 'type': 'directory',
 'name': 'nginx',
 'path': '/etc/nginx',
 'children': [
 {'type': 'file', 'name': 'nginx.conf', 'path':
'/etc/nginx/nginx.conf'},
 {
 'type': 'directory',
 'name': 'sites-enabled',
 'path': '/etc/nginx/sites-enabled',
 'children': [
 {'type': 'file', 'name': 'default', 'path':
'/etc/nginx/sites-enabled/default'}
],
 },
],
 },
],
 },

2026/02/09 13:24 3/4 LU03.A01 - Rekursive Suche in einem Verzeichnisbaum

BZZ - Modulwiki - https://wiki.bzz.ch/

],
}

def find_file(name, directory):
 # Your code goes here

if __name__ == '__main__':
 path = find_file('config.yaml', directory_tree)
 print(path) # Sollte den Pfad zur Datei ausgeben

Vorgehen

Gehen Sie nach der 5-Schritte Methode vor, überlegen Sie sich für jeden Schritt die Lösung und tragen
Sie alles als funktionierendes Programm zusammen:

Einfachster Input (Base Case)1.
Herumspielen und Visualisieren2.
Schwierige Fälle mit Einfachen Vergleichen3.
Muster Generalisieren4.
Muster mit Base Case Kombinieren5.

Hinweise

Einfachster Input (Base Case): Der einfachste Fall tritt auf, wenn ein Verzeichnis keine
Unterordner (Kinder) hat oder wenn der gesuchte Dateiname im aktuellen Verzeichnis gefunden wird.
In diesen Fällen kann die Rekursion beendet werden.

FUNKTION finde_element(name, element):
 // Base Case: Wenn das Element im aktuellen Element gefunden wird
 WENN element['type'] == 'file' und element['name'] == name DANN
 RÜCKGABE Element['path']
 ENDE_WENN
 ...

Herumspielen und Visualisieren: Um das Problem besser zu verstehen, könnte man mit einem
kleinen Verzeichnisbaum experimentieren und versuchen, den Weg zu einer bestimmten Datei
manuell zu finden. Diagramme oder Skizzen des Baums könnten dabei hilfreich sein.

Schwierige Fälle mit Einfachen Vergleichen: In einem komplexen Verzeichnisbaum ist es
hilfreich, die Suche in jedem Unterordner als ein separates, einfacheres Problem zu betrachten. Die
Suche in einem Unterordner ist identisch wie die Suche im übergeordneten Ordner.

Muster Generalisieren: Nachdem man die Beziehung zwischen den komplexen und den einfachen
Fällen gefunden hat, könnte man eine allgemeine Lösung entwickeln. In diesem Fall wäre das eine
rekursive Funktion, die durch jeden Unterordner geht und die gleiche Suche darin ausführt, bis der
gesuchte Dateiname gefunden wird oder kein Unterordner mehr übrig ist.

FUNKTION finde_element(name, element):

https://wiki.bzz.ch/modul/m323/learningunits/lu03/rekursion2

Last
update:
2024/03/28
14:07

modul:m323:learningunits:lu03:aufgaben:verzeichnisbaum https://wiki.bzz.ch/modul/m323/learningunits/lu03/aufgaben/verzeichnisbaum

https://wiki.bzz.ch/ Printed on 2026/02/09 13:24

 ...
 // Wenn das Element Kinder hat, durchlaufe sie
 WENN element['type'] == 'directory' und 'children' IN Element DANN
 FÜR JEDES kind IN element['children']
 pfad = find_element(name, kind) // Rekursiver Aufruf
 WENN pfad EXISTIERT DANN // Wenn der Pfad gefunden wurde, gebe
ihn zurück
 RÜCKGABE pfad
 ENDE_WENN
 ENDE_FÜR
 ENDE_WENN
 ...

Muster mit Base Case Kombinieren: Die endgültige rekursive Funktion würde die allgemeine
Lösung (durch jeden Unterordner gehen) mit dem Base Case (keine Unterordner oder Dateiname
gefunden) kombinieren, um eine vollständige Lösung für das Problem zu bieten.

 // Base Case: Wenn das Element im aktuellen Element gefunden wird
 WENN element['type'] == 'file' und element['name'] == name DANN
 RÜCKGABE Element['path']
 ENDE_WENN
 // Wenn das Element Kinder hat, durchlaufe sie
 WENN element['type'] == 'directory' und 'children' IN Element DANN
 FÜR JEDES kind IN element['children']
 pfad = find_element(name, kind) // Rekursiver Aufruf
 WENN pfad EXISTIERT DANN // Wenn der Pfad gefunden wurde, gebe
ihn zurück
 RÜCKGABE pfad
 ENDE_WENN
 ENDE_FÜR
 ENDE_WENN
 // Wenn das Element nicht gefunden wird
 RÜCKGABE None

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu03/aufgaben/verzeichnisbaum

Last update: 2024/03/28 14:07

https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu03/aufgaben/verzeichnisbaum

	LU03.A01 - Rekursive Suche in einem Verzeichnisbaum
	Vorlage
	Vorgehen
	Hinweise

