2026/02/03 21:39 1/4 LUO3f - Callback Funktionen

LUO3f - Callback Funktionen

Callback Funktionen sind eine klassische Anwendung von First-Class- und Higher-Order-Functions.

Callbacks in der GUI Programmierung

Die Entwicklung von grafischen Benutzeroberflachen (GUIs) unterscheidet sich in vielerlei Hinsicht von
der Entwicklung von Konsolen- oder Terminalanwendungen. Eine der Hauptunterschiede ist, dass GUI-
Anwendungen ereignisgesteuert sind. Das bedeutet, dass statt in einer sequenziellen Reihenfolge von
oben nach unten durch den Code zu gehen, die Ausfihrung des Codes oft von Benutzeraktionen wie
Mausklicks, Tastatureingaben oder anderen Ereignissen ausgeldst wird. Hier kommen Callbacks ins
Spiel.

Was sind Callbacks?

Ein Callback ist eine Funktion, die an eine andere Funktion als Argument tbergeben wird und zu
einem spateren Zeitpunkt in Reaktion auf ein Ereignis ausgefuhrt wird. In der GUI-Programmierung
werden Callbacks haufig verwendet, um auf Benutzerereignisse zu reagieren.

Warum werden Callbacks in der GUI-Programmierung verwendet?

1. Ereignisgesteuerte Natur von GUIs: Da GUI-Anwendungen darauf warten, dass
Benutzerereignisse auftreten, konnen wir nicht vorhersehen, wann diese Ereignisse eintreten
werden. Callbacks bieten eine Maglichkeit, spezifische Codebldcke in Reaktion auf bestimmte
Ereignisse auszufuhren.

2. Modularitat und Wiederverwendbarkeit: Durch die Verwendung von Callbacks kdnnen Sie
spezifische Aktionen isolieren, was den Code sauberer und wiederverwendbarer macht.

3. Flexibilitat: Callbacks ermdéglichen es, unterschiedliche Aktionen fur dasselbe Ereignis zu
definieren, je nach Kontext oder Zustand der Anwendung.

Beispiel

In vielen GUI-Frameworks, einschlieBlich tkinter in Python, wird ein Button-Widget mit einem
Callback verknUpft, um zu definieren, was passieren soll, wenn der Benutzer auf den Button klickt.

tkinter tk

on button click
‘Der Button wurde geklickt!'

root = tk.Tk
button = tk.Button(root, text='Klicken Sie mich', command=on button click

button.pack

BZZ - Modulwiki - https://wiki.bzz.ch/



Last update:

2024/03/28 14:07 modul:m323:learningunits:lu03:callbacks https://wiki.bzz.ch/modul/m323/learningunits/lu03/callbacks?rev=1711631267

root.mainloop

In diesem Beispiel ist on_button click der Callback, der aufgerufen wird, wenn der Benutzer auf
den Button klickt.

Fazit

Callbacks sind ein essenzielles Konzept in der GUI-Programmierung und bieten eine effektive
Maglichkeit, auf Benutzerereignisse zu reagieren und einen dynamischen, interaktiven Workflow far
Anwendungen zu erstellen.

Callbacks in der Asynchronen Programmierung

Asynchrone Programmierung ist ein Ansatz, bei dem Operationen ausgeflhrt werden kdnnen, ohne
den Ablauf des gesamten Programms zu blockieren. Ein haufiges Szenario fur asynchrone Aufrufe sind
Netzwerkanfragen, z. B. API-Aufrufe, bei denen nicht vorhersehbar ist, wie lange sie dauern werden.

Warum Callbacks in asynchronen Aufrufen verwenden?

¢ Nicht-blockierende Natur: Bei einem synchronen Aufruf wirde Ihr Code anhalten und warten,
bis die Anfrage abgeschlossen ist. Bei einem asynchronen Aufruf kann der Code weiter
ausgefuhrt werden, ohne auf die Antwort zu warten. Ein Callback ermaoglicht es, spezifischen
Code auszufuhren, sobald die Antwort eintrifft.

e Strukturierte Code-Organisation: Durch die Verwendung von Callbacks kénnen Sie
spezifische Aktionen oder Folgeverarbeitungen klar definieren, die nach Abschluss einer
Operation ausgefuhrt werden sollen.

¢ Fehlerbehandlung: Callbacks konnen so gestaltet werden, dass sie sowohl mit normalen
Daten als auch mit Fehlern umgehen kdnnen. Dies ist besonders nitzlich bei Netzwerkanfragen,
bei denen viele Dinge schief gehen kdnnen.

Warum nicht einfach den Code direkt nach dem API-Aufruf ausfiihren?

¢ Unvorhersehbare Antwortzeiten: Bei synchronem Code, der auf eine Netzwerkanfrage folgt,
haben Sie keine Kontrolle dariber, wann die Antwort eintrifft. Ihr gesamtes Programm wurde
warten, was zu einer schlechten Benutzererfahrung fihren kann.

* Ressourceneffizienz: Asynchrone Aufrufe ermdglichen es, Ressourcen effizienter zu nutzen.
Wahrend Sie auf eine Antwort warten, kann die CPU andere Aufgaben erledigen.

e Klarheit und Wartbarkeit: Durch das Trennen der Logik in verschiedene Funktionen (z. B.
eine fur den API-Aufruf und eine andere flr die Verarbeitung der Antwort) wird der Code
sauberer und leichter zu warten.

Asynchron Programmieren in Python

In modernen Anwendungen, insbesondere bei I/O-intensiven Aufgaben wie Netzwerkanfragen,
Datenbankzugriffen oder Dateioperationen, ist es oft erforderlich, Operationen asynchron
auszufiihren, um die Gesamtleistung der Anwendung zu verbessern. Python bietet mit “async™ und
“await” ein leistungsfahiges Werkzeug zur asynchronen Programmierung.

https://wiki.bzz.ch/ Printed on 2026/02/03 21:39



2026/02/03 21:39 3/4 LUO3f - Callback Funktionen

Was sind async und await?

e async: Das Schlusselwort async definiert eine Funktion als asynchron. Eine solche Funktion
gibt ein ,Coroutine”-Objekt zurlick, das spater mit await aufgerufen werden kann.

e await: Das Schlisselwort await wird verwendet, um das Ergebnis einer asynchronen
Operation abzurufen. Es kann nur innerhalb einer async-Funktion verwendet werden.

Beispiele

Einfaches Beispiel mit sleep()

Ein einfaches Beispiel fur die Verwendung von async und await:
asyncio

async say hello
"Hallo"
await asyncio.sleep
"Welt"

__hame ~_main_ ':
asyncio.run(say hello

In diesem Beispiel wird die Funktion say hello mit dem Schlisselwort async definiert, was
bedeutet, dass sie asynchron ist. Innerhalb dieser Funktion wird await verwendet, um die
Ausfihrung fur eine Sekunde zu pausieren, bevor Welt gedruckt wird.

Beispiel mit API-Call

Dieses Beispiel ruft Daten von einer Dummy-API ab und verwendet async und await. Um
asynchrone HTTP-Anfragen in Python durchzufihren, kénnen Sie die httpx-Bibliothek verwenden.
Dies ist eine moderne HTTP-Client-Bibliothek, die sowohl synchronen als auch asynchronen Code
unterstutzt.

httpx
asyncio
async fetch data
async httpx.AsyncClient client:

response = await
client.get('https://hub.dummyapis.com/delay?seconds=3"

response
async main
result = await fetch data
result

BZZ - Modulwiki - https://wiki.bzz.ch/



Last update:

2024/03/28 14:07 modul:m323:learningunits:lu03:callbacks https://wiki.bzz.ch/modul/m323/learningunits/lu03/callbacks?rev=1711631267

__hame ' _main_ ':
asyncio.run(main

M323-LUO3

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: =
https://wiki.bzz.ch/modul/m323/learningunits/lu03/callbacks?rev=1711631267 '

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/ Printed on 2026/02/03 21:39


https://wiki.bzz.ch/tag/m323-lu03?do=showtag&tag=M323-LU03
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu03/callbacks?rev=1711631267

	LU03f - Callback Funktionen
	Callbacks in der GUI Programmierung
	Was sind Callbacks?
	Warum werden Callbacks in der GUI-Programmierung verwendet?
	Beispiel
	Fazit

	Callbacks in der Asynchronen Programmierung
	Asynchron Programmieren in Python
	Was sind async und await?
	Beispiele
	Einfaches Beispiel mit sleep()
	Beispiel mit API-Call





